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Abstract Spatial models of genetic structure and poten-
tial gene flow were determined for five populations of
Balanophyllia europaea, a simultaneous hermaphroditic
and brooding coral, endemic to the Mediterranean. Six
allozyme loci indicated a genetic structure that departed
markedly from Hardy–Weinberg equilibrium, with a
significant lack of heterozygotes. The genetic structure
observed supports the hypothesis that self-fertilisation
characterises the reproductive biology of B. europaea.
Populations at small spatial scales (8–40 m) are geneti-
cally connected, while those at large scales (36–
1,941 km) are genetically fragmented; the genetic dif-
ferentiation of the populations is not correlated to geo-
graphic separation. This spatial model of genetic
structure is compatible with an inbreeding mating sys-
tem. Furthermore, it is also consistent with the expected
dispersal potential of swimming larvae of brooding
corals, i.e. larvae that are able to produce significant
gene flows only within limited spatial scales.

Introduction

Evolutionary biology has long been tackled through
the study of the adaptive significance of different
mating systems and dispersal patterns. Many authors
have published their views on this subject (Uyenoyama
et al. 1993; Palumbi 1994; Bohonak 1999). Different
reproductive strategies have been commonly associated
with different dispersal capabilities. In general terms, a
high dispersal potential has often been correlated to

heterogamous sexual reproduction and to the produc-
tion of genotypically diverse propagules capable of
maintaining genetic homogeneity among interconnected
populations (Hedgecock 1986; Palumbi 1992; Ayre
et al. 1997a). On the contrary, a low dispersal potential
is generally associated with inbreeding, lack of hetero-
zygosity and a greater genetic subdivision among
populations due to drift and to site-specific selection
(Knowlton and Jackson 1993; Frankham 1995).
Exceptions to this emerging paradigm exist. For
example, many plants and animals produce clonal
propagules with high dispersal capabilities (Jackson
1986; Mogie 1992). On the other hand, the duration of
seed and larval dispersal in many species is variable,
with some propagules settling immediately after release
and others postponing metamorphosis, thereby ensur-
ing a wide geographical range for potential dispersal
(Gerrodette 1981; Harper 1977). The distance covered
by propagules, their origin and the genetic conse-
quences of past and present dispersal patterns are
generally unknown (Ayre and Hughes 2000).

Most of the data available on the evolution of
mating systems, and particularly on inbreeding systems,
come from botanical studies (Carlon 1999). Marine
invertebrates give us the opportunity to test and
expand theories on mating systems and on dispersal
patterns in a group of organisms living in a different
milieu, the sea (Jarne and Charlesworth 1996). Among
invertebrates, Anthozoa exhibit an extraordinary
diversity of life-cycle traits at the species, population
and individual levels (Edmands and Potts 1997; McF-
adden et al. 2001). Specifically, when referring to the
reproductive strategies of scleractinians, there are cases
of self-fertilisation (Brazeau et al. 1998), vegetative
reproduction by clonal fragments (Highsmith 1982)
and asexual production of planulae (Ayre and Resing
1986) and of benthic-crawling larvae (Gerrodette 1981).
These reproductive processes generally restrict gene
flow and cause a marked subdivision among popula-
tions (Ayre and Hughes 2000). However, scleractinians
most frequently go through a swimming larval phase
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with pelagic dispersal (Harrison and Wallace 1990).
Biogeographic studies (Veron 1995), hydrodynamic
models (Wolanski 1994), plankton samplings (Willis
and Oliver 1990) and laboratory studies on the physi-
ology and behaviour of larvae (Richmond 1987;
Mundy and Babcock 1998; Goffredo and Zaccanti
2004) have supplied data on dispersal range, often
leading to contrasting predictions. For example, some
hydrodynamic studies of reefs show that water can
persist locally long enough to guarantee self-seeding:
larvae remain trapped until mature enough to attach to
their native reef and begin metamorphosis (see Black
et al.1991). According to other models, propagules are
transported over great distances, thereby crossing coral
reefs and different geographic regions (Wolanski 1994;
Veron 1995; Roberts 1998).

Balanophyllia europaea (Risso, 1826) is a zooxan-
thellate solitary scleractinian endemic to the Mediter-
ranean Sea (Zibrowius 1980). Due to its symbiosis with
zooxanthellae, it exhibits a limited depth distribution
(maximum 50 m depth, Zibrowius 1980); congeneric
azooxanthellate species reach depths >1,000 m (Cairns
1977). Maximum population density of B. europaea is
reached at depths of 4–8 m, with peaks of 100 indi-
viduals m�2 (Goffredo 1999; Goffredo et al. 2004). The
reproductive biology of this species is characterised by
simultaneous hermaphroditism and brooding (Goff-
redo and Telò 1998). B. europaea is the only species in
the genus Balanophyllia, and one of the few species in
the family Dendrophylliidae, to exhibit hermaphrodit-
ism (Harrison 1985; Goffredo et al. 2000). Histological
observations show that there is neither spatial nor
temporal separation between male and female game-
togenesis and that encounters occur between mature
spermatozoa and oocytes produced by the same indi-
vidual (Goffredo et al. 2002). These observations sug-
gest that autogamy could be a reproductive strategy in
this species. Over the annual reproductive cycle, fer-
tilisation takes place from March to June and planu-
lation between August and September (Goffredo et al.
2002). Planulas have completed ontogenesis at the time
they are released and exhibit swimming behaviour
(Goffredo and Zaccanti 2004). Evidence of asexual
reproduction (either through polyp budding or fission)
has not been observed (Goffredo and Telò 1998;
Goffredo et al. 2000, 2002, 2004; Goffredo and
Zaccanti 2004).

We examine here the genetic structure of populations
of B. europaea and infer their modes of reproduction
and dispersal patterns. In particular, the hypothesised
self-fertilisation and the limited dispersal potential,
peculiar to brooding organisms (Harrison and Wallace
1990; Ayre and Hughes 2000; McFadden et al. 2001),
should lead to strong inbreeding within populations,
with a consequently significant departure from Hardy–
Weinberg equilibrium for the lower number of hetero-
zygotes, along with low gene flow and marked diver-
gence among populations (Wright 1969; Carlon 1999;
Ayre and Hughes 2000).

Materials and methods

Sampling

Samples of Balanophyllia europaea were collected from
five sites in the Mediterranean Basin (Fig. 1): two in the
Ligurian Sea, in the area of Capraia Island and in the
area of Calafuria (Leghorn) along the Tuscan coast; one
in the northern Tyrrhenian Sea, in the area of Elba
Island; one in the Channel of Sicily, in the area of
Lampedusa Island; and one in the northern Adriatic
Sea, near Pula at the southern tip of the Istra peninsula.
These five localities are from 36 to 1,941 km apart.
Specimens were collected from August 2000 to August
2001 by SCUBA diving at the depth of maximum pop-
ulation density (4–8 m). Given that the generation time
of B. europaea is 3.6 years (maximum life span=20 -
years; Goffredo et al. 2004), we do not consider the
range in the sampling dates to be significant with respect
to differentiation within populations. At each site, pol-
yps were collected from six patches (rectangular areas of
624 cm2 cordoned off by a plastic frame; 29.7·21.0 cm)
8 m apart (we estimated the distance between patches
within localities based on the number of body lengths
between them; according to Hellberg 1994). All the

Fig. 1 Balanophyllia europaea. Sampled populations (coordinates
and abbreviations of populations in decreasing order of latitude:
PUL Pula, 44�53¢N; 13�49¢E; CAL Calafuria, 43�29¢N; 10�19¢E;
CAP Capraia, 43�02¢N; 9�48¢E; ELB Elba, 42�48¢N; 10�07¢E; LAM
Lampedusa, 35�30¢N; 12�36¢E)
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polyps found within each patch were collected. Living
specimens were transported in refrigerated units and
brought to the laboratories of the Department of
Experimental Evolutionary Biology of the University of
Bologna. Specimens were dissected and then examined
under a binocular microscope. All oocytes and embryos
were removed to avoid confounding the parental geno-
type with that of the progeny. We scraped epibionts off
the samples and then put each individual into a single
tube devoid of seawater, which was stored at �80�C.

Laboratory analysis

Tissue was taken from samples and then homogenised
using an equal volume of 0.1 M Tris-HCl buffer pH 7.5
(containing 1 mM Na-EDTA, 0.6 mM NAD, 0.5 mM
NADP, 1 mM mercaptoethanol). The homogenates
were centrifuged at 10,500 g for 10 min at 4�C, and the
supernatants were used for electrophoresis. Mucus,
zooxanthellae and cell debris were removed by centri-
fugation (Muscatine and Cernichiari 1969; Stoddart
1983; Ayre et al. 1997b; Dai et al. 2000). Allozyme
electrophoresis was carried out under different electrical
conditions using cellulose acetate (Diploid dry) as sub-
strate at 4�C. Staining was carried out in an oven at
37�C. Eighteen loci were initially tested using four dif-
ferent buffers: TEC, pH 7.5 (Meera-Khan 1971); Tris-
citrate, pH 7.2 (Grunbaum 1981); and TEM, pH 7.4
and 7.8 (Schneppenheim and MacDonald 1984). The
latter gave the best resolution. Six loci were polymorphic
for all populations and therefore significant for our
analysis: phosphoglucose isomerase (Pgi, EC 5.3.1.9),
phosphoglucomutase (Pgm, EC 5.4.2.2), hexokinase
(Hk, EC 2.7.1.1), adenylate kinase (Ak, EC 2.7.4.3),
mannosephosphate isomerase (Mpi, EC 5.3.1.8) and
phosphogluconate dehydrogenase (Pgd, EC 1.1.1.44).
Alleles were numbered using the most common allele
found in the Calafuria population as reference
(allele 100).

Statistical analysis

Population genetic analyses were carried out using
GENEPOP (version 3.3; Raymond and Rousset 1995)
and FSTAT software (version 2.9.3; Goudet 1995,
2001).

Measures used to assess genetic variation were the
average number of alleles per locus, the percentage of
polymorphic loci (95% criterion) and the comparison
between observed (Ho) and expected (He) heterozygosity
under Hardy–Weinberg equilibrium. Expected hetero-
zygosity corresponds to Nei’s (1973) gene diversity and
is calculated using Levene’s (1949) correction for small
samples.

The degree of genetic differentiation among popula-
tions was assessed by Wright’s F-statistics (Wright 1978)
as calculated by Weir and Cockerham (1984). This sta-

tistic, using departures from expected levels of hetero-
zygosity under complete panmixia, is based on three
indexes: FIS (f), an estimate of the deficit of heterozyg-
otes within populations (inbreeding coefficient); FST (h),
an estimate of the deficit of heterozygotes among pop-
ulations (indicating the genetic subdivision among
populations); and FIT (F), an estimate of the deficit of
heterozygotes in the total population.

We used the approximation Nem=[(1/FST)�1]/4 to
calculate the actual number of migrants per generation,
i.e. the gene flow (Nem) between pairs of populations
(following Hellberg 1996; Miller 1997; Ayre and
Hughes 2000). This inference, based on Wright’s (1969)
‘‘island model’’ (the assumptions of which are that
gene flow is bidirectional and at stable equilibrium,
that the rate of migration greatly exceeds that of
mutation and that the genetic markers employed are
selectively neutral), provides an unbiased estimator of
gene flow that is relatively insensitive to moderate
levels of selection (Slatkin and Barton 1989; for dis-
cussion on the caveats of using FST to infer Nem, see
Whitlock and McCauley 1999; Neigel 2002). Genetic
differentiation between pairs of populations was
expressed by Nei’s measure (D) of unbiased genetic
distances (Nei 1978). In order to assess the influence of
geographic distance on genetic separation in the pop-
ulations, we used the model of Slatkin (1993) according
to which: log10(M)=a+blog10 (geographic distance), in
which M is equal to Nem between pairs of populations.
The geographic distance between pairs of populations
is the lowest nautical distance between localities mea-
sured on maps based on a scale from 1:24,000 to
1:1,000,000 (Hellberg 1994).

Results

Genetic differentiation at large spatial scales

Table 1 shows the allelic frequencies at the six poly-
morphic loci in five Mediterranean populations of
Balanophyllia europaea, ranging from 36 to 1,941 km
apart. The total number of alleles per locus ranged from
5 (Mpi) to 15 (Pgm). Private alleles were rather frequent
at all loci. For example, Mpi*103 and Mpi*98 were
found only in the Elba island population; Pgm*118,
*111, *110, *105 and *104, in the Calafuria population;
and Pgm*96, in the Lampedusa sample.

The mean number of alleles per locus within each
population ranged from 2.00 to 5.14. The percentage of
polymorphic loci varied from 80% to 100%. Observed
heterozygosity was lower than the expected heterozy-
gosity under Hardy–Weinberg equilibrium in all pop-
ulations, ranging from 2.8 times lower in the Pula
sample (Ho=0.119, He=0.329) to 11.3 times lower in
the Capraia one (Ho=0.026, He=0.294; Table 2).
Departure from Hardy–Weinberg equilibrium was
enhanced by the genotypic frequencies at each locus,
showing a marked deficit of heterozygotes; the only
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exception was the locus Hk in the Pula population
(FIS=�0.083, P>0.05; Tables 3, 4). The high rate of
inbreeding in the populations was shown by the mean
value of FIS, which was >0 at all loci (range 0.768–
0.902; P<0.01; Table 4).

FST values departed significantly from zero at all loci;
they ranged from 0.087 for the Pgm locus to 0.266 for
the Pgi one (Table 4). The mean FST value calculated for
all six loci was 0.202 (P<0.01). These data showed that
the populations are genetically subdivided.

Analysis of the genetic subdivision between pairs of
populations revealed general genetic fragmentation. FST

values support genetic fragmentation, with a significant
departure from zero in all cases except one (the Capraia–
Lampedusa pair; Table 5).

Estimated gene flow (Nem) was calculated using FST

values and indicated a mean value of 0.988 migrants per
generation among the five populations and a range of
0.423–8.180 migrants per generation for pairs of popu-
lations (Table 5). Regression of log10 gene flow (M,
individuals per generation) versus log10 geographic dis-
tance of separation (km) for all pairwise combinations of
five populations examined did not indicate a significant
correlation between genetic isolation and geographic
separation (y=�0.0489x+0.2051, where y is log M and
x is log distance; r2=0.009, P>0.05). Nei’s unbiased
genetic distance (D) between population pairs varied
from 0.082 to 0.436 (Table 5).

Genetic differentiation at small spatial scales

At Calafuria, the high density of individuals (113 m�2 at
a depth of 6 m; Goffredo et al. 2004) allowed the col-
lection of a sample large enough to compare the genetic
structure between different patches, ranging from 8 to
40 m apart. Our analysis showed a marked deficit of
heterozygotes at all loci within all patches, with a mean
FIS value of 0.808 (P<0.01). For all loci, F-statistic
analysis yielded FST values that were not significantly

Table 1 Balanophyllia europaea. Allelic frequencies scored for the
five analysed samples (N total number of individuals examined for
each locus). Population acronyms as in Fig. 1

Locus,
allele

CAL CAP ELB LAM PUL

Pgd
N 14 13 17 16 14
103 – 0.038 – – –
102 – – 0.265 – 0.214
101 – – 0.059 – –
100 0.964 0.385 0.588 0.750 0.786
99 – 0.038 0.088 – –
98 – 0.538 – 0.250 –
97 0.036 – – – –

Hk
N 52 21 11 16 14
102 0.038 – – – –
100 0.365 – – – –
97 0.135 – 0.364 – –
96 0.356 0.286 0.364 0.063 –
95 0.077 0.524 0.227 0.781 0.893
94 0.010 – – 0.063 –
93 – 0.095 0.045 0.031 –
92 0.019 0.095 – – –
91 – – – – 0.107
88 – – – 0.063 –

Pgi
N 66 14 17 12 14
102 0.038 – – – –
101 0.061 – – – –
100 0.447 – – – 0.071
99 0.015 0.464 0.294 0.500 0.857
98 0.023 – 0.412 – 0.071
97 0.311 0.429 0.294 0.500 –
96 0.015 0.107 – – –
95 0.068 – – – –
94 0.023 – – – –

Pgm
N 76 18 6 17 14
118 0.007 – – – –
111 0.013 – – – –
110 0.007 – – – –
108 – – 0.083 0.029 –
107 0.020 0.028 – 0.029 –
105 0.046 – – – –
104 0.046 – – – –
103 0.013 0.028 – – 0.321
102 0.283 0.111 – – –
101 0.046 0.167 – – –
100 0.382 0.361 0.917 0.588 0.393
99 0.072 – – 0.059 0.286
98 0.013 0.222 – 0.235 –
97 0.053 0.083 – – –
96 – – – 0.059 –

Mpi
N 15 14 15 13 14
103 – – 0.133 – –
101 – – 0.200 0.077 –
100 1,000 0.857 0.433 0.654 1,000
99 – 0.143 0.133 0.269 –
98 – – 0.100 – –

Ak
N 11 21 12 12 14
102 0.091 – – – –
101 – 0.048 0.333 – –
100 0.818 0.381 0.208 0.583 –
99 – 0.452 0.083 0.333 0.643
98 0.091 – 0.208 0.083 0.357
97 – 0.119 0.167 – –

Table 2 Balanophyllia europaea. Genetic variability in the five
Mediterranean populations (population acronyms as in Fig. 1;
Date date of sample collection; N mean number of individuals
examined per locus; n mean number of alleles per locus; P percent
of polymorphic loci in which the most common allelic frequency is
<95%; Ho and He mean observed and expected heterozygosity,
respectively; standard deviations are in parentheses)

Population Date N n P Ho He

CAL 18 Aug 2000 37.0 5.83 80 0.030 0.150
(27.1) (4.67) (0.042) (0.158)

CAP 30 Dec 2000 17.4 4.00 100 0.026 0.294
(3.7) (1.67) (0.032) (0.173)

ELB 14 Jul 2001 12.1 3.83 100 0.070 0.322
(4.5) (1.17) (0.121) (0.140)

LAM 22 Nov 2001 15.0 3.50 100 0.051 0.284
(2.7) (1.64) (0.072) (0.180)

PUL 15 Aug 2001 14.0 2.17 100 0.119 0.329
(0.0) (0.75) (0.141) (0.138)
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different from zero (average=0.038, P>0.05), indicat-
ing the existence of genetic connectivity among the
patches. The estimate of gene flow (Nem) among pat-
ches, based on FST values, showed an average of
6.329 migrants per generation and, for single pairs of
patches, a range of 1.647–15.572 migrants per genera-
tion. Among pairs of patches, no significant correlation
was found between gene flow and spatial distance of
separation (r2=0.014, P>0.05). Nei’s unbiased genetic

distance between pairs of patches varied from 0.076 to
0.248.

Discussion

Hardy–Weinberg equilibrium

We report here for the first time on the genetic structure
of a Mediterranean scleractinian coral. The genotypic
frequencies revealed a marked departure from Hardy–
Weinberg equilibrium, with a considerable deficit of
heterozygotes. FIS is significantly positive for all loci,
indicating a high rate of inbreeding. These results
strongly support the hypothesis that self-fertilisation
characterises the reproductive biology of Balanophyllia
europaea (Goffredo and Telò 1998; Goffredo et al. 2002).
More than two-thirds of all scleractinians studied are
simultaneous hermaphrodites, and, in most cases, both
male and female gametes are produced within the same
polyp (Harrison and Wallace 1990). Studies on the
mating systems of hermaphroditic scleractinians stress
the potential for self-fertilisation in broadcasting and
brooding organisms, selfing being common in the latter
organisms, but not in the former (reviewed in Carlon
1999). Particularly, the genetic structure of the self-fer-
tilising, brooding coral Acropora palifera, which was

Table 4 Balanophyllia europaea. Estimate of deviation from
Hardy–Weinberg equilibrium (FIS estimates per population and
locus), and F-statistics for the five Mediterranean populations.
Statistical significance was determined using permutation tests

followed by Bonferroni adjustments. F-statistics indicate deviation
from Hardy–Weinberg within the total population (FIT), within
populations (FIS) and among populations (FST). Population acro-
nyms as in Fig. 1

Population Pgd Hk Pgi Pgm Mpi Ak

CAL – 0.974*** 0.611*** 0.794*** – 1.000*
CAP 0.872*** 1.000*** 0.887*** 0.863*** 1.000* 0.928***
ELB 0.903*** 0.878*** 1.000*** – 0.914*** 0.491***
LAM 1.000** 0.526* 1.000** 0.811*** 0.561* 1.000***
PUL 1.000** – 0.083 0.469* 0.488** – 1.000**
FIT(F) 0.920** 0.914** 0.801** 0.788** 0.852** 0.887**
FIS(f) 0.902** 0.885** 0.729** 0.768** 0.820** 0.856**
FST(h) 0.182** 0.259** 0.266** 0.087** 0.178* 0.216**

* P<0.05, ** P<0.01, *** P<0.001

Table 3 Balanophyllia europaea. Heterozygosity at six loci in the five Mediterranean populations. Observed (Ho) and expected (He)
heterozygosity are shown for each locus (standard deviation in parentheses). Population acronyms as in Fig. 1

Population Pgd Hk Pgi Pgm Mpi Ak

Ho He Ho He Ho He Ho He Ho He Ho He

CAL – – 0.005 0.206 0.060 0.155 0.024 0.117 – – 0.000 0.219
(0.009) (0.191) (0.061) (0.180) (0.026) (0.150) (0.000) (0.080)

CAP 0.039 0.291 0.000 0.321 0.047 0.407 0.032 0.227 0.000 0.254 0.024 0.325
(0.044) (0.247) (0.000) (0.170) (0.041) (0.181) (0.030) (0.156) (0.000) (0.000) (0.028) (0.204)

ELB 0.030 0.295 0.046 0.357 0.000 0.452 – – 0.027 0.301 0.167 0.320
(0.034) (0.185) (0.053) (0.186) (0.000) (0.041) (0.037) (0.127) (0.228) (0.110)

LAM 0.000 0.387 0.075 0.156 0.000 0.522 0.039 0.203 0.154 0.343 0.000 0.377
(0.000) (0.000) (0.082) (0.113) (0.000) (0.000) (0.048) (0.186) (0.077) (0.171) (0.000) (0.190)

PUL 0.000 0.349 0.214 0.198 0.095 0.177 0.238 0.457 – – 0.000 0.476
(0.000) (0.000) (0.000) (0.000) (0.083) (0.067) (0.206) (0.036) (0.000) (0.000)

Table 5 Balanophyllia europaea. FST values (above the diagonal
line), mean number of migrants per generation (Ne m, in paren-
theses above the diagonal) and Nei’s unbiased genetic distances
(below the diagonal line) in the five sampled Mediterranean popu-
lations. FST statistical significance was determined using permuta-
tion tests followed by Bonferroni adjustments (**P<0.01).
Population acronyms as in Fig. 1

CAL CAP ELB LAM PUL

CAL 0.213** 0.204** 0.208** 0.371**
(0.922) (0.978) (0.950) (0.423)

CAP 0.281 0.142** 0.030 0.194**
(1.508) (8.180) (1.042)

ELB 0.320 0.302 0.134** 0.273**
(1.622) (0.667)

LAM 0.249 0.082 0.234 0.189**
(1.073)

PUL 0.436 0.208 0.359 0.171
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studied using allozymatic loci, exhibited a deficit of
heterozygotes similar to that found in B. europaea
(Carlon 1999). Our comparative study now under way
on parental and progeny genotypes of B. europaea, using
highly variable genetic markers (microsatellites), is
expected to yield an estimate of the rate of self-fertili-
sation (s) in this brooding coral.

Self-fertilisation is a reproductive strategy common
to hermaphroditic terrestrial plants (approximately 65%
are at least partly self-fertilising, Jarne and Charlesworth
1993; Barret and Harder 1996). Of the 24 species of
simultaneous hermaphroditic marine invertebrates that
have been investigated, self-fertilisation has been dem-
onstrated in nine cases (38%; Knowlton and Jackson
1993). There is also well-documented evidence of self-
fertilisation in terrestrial pulmonate gastropods (Jarne
et al. 1993). Self-fertilisation is associated with poor
mobility or a sessile life style, low population density
(Tomlinson 1966; Kojis and Quinn 1981), and/or colo-
nisation of disturbed habitats that could limit cross-
fertilisation (Bucklin et al. 1984). B. europaea is the only
species of the genus that is a zooxanthellate, simulta-
neous hermaphrodite that colonises disturbed shallow
waters with low population densities (Goffredo and Telò
1998; Goffredo et al. 2002, 2004). Other species of the
genus Balanophyllia are azooxanthellate, gonochoric
and colonise habitats with high population density
(Fadlallah 1983). Given the mode of habitat colonisa-
tion of B. europaea, we hypothesise that self-fertilisation
in this species may represents an adaptive condition
(Ghiselin 1969; Knowlton and Jackson 1993).

Biparental inbreeding is another mating system that
can generate a deficit of heterozygotes (Edmands and
Potts 1997). However, the pelagic swimming behaviour
of B. europaea larvae (Goffredo and Zaccanti 2004)
should favour dispersal and significantly limit the chance
for biparental inbreeding (Carlon 1999).

Genetic differentiation at large spatial scales

We found significant genetic differentiation among the
populations examined. Differentiation was found at
all loci, with FST values significantly >0 (mean
FST=0.202), indicating considerable restrictions to gene
flow (mean Nem=0.988 migrants per generation). The
level of genetic differentiation found in B. europaea was
similar to the one found in other marine invertebrates
characterised by low larval dispersal capability, such as
the brooding soft corals Alcyonium rudyi (FST=0.230–
0.460; McFadden 1997) and Clavularia koellikeri
(FST=0.134; Bastidas et al. 2002) and the brooding
scleractinians Seriatopora hystrix (FST=0.165–0.795;
Ayre and Dufty 1994) and Balanophyllia elegans
(FST=0.280; Hellberg 1994). These results are compat-
ible with the theory that dispersal and gene flow are
restricted in brooding species (Carlon 1999). Be that as it
may, some species of marine invertebrates that brood, or
are characterised by reproductive modalities that seem-

ingly limit dispersal capability, do exhibit high gene
flows and low levels of genetic differentiation. For
example, the black coral with benthic larvae Anthipathes
fiordensis (Miller 1997) and the brooding scleractinians
Pocillopora daminicornis (Ayre et al. 1997b), Acropora
cuneata, A. palifera and Stylophora pistillata (Ayre and
Hughes 2000) exhibit FST values <0.1, with the majority
of these values not departing significantly from zero.
These results highlight the fact that an entire range of
processes may influence genetic differentiation in popu-
lations and may produce strong variations in dispersal
capabilities in species that have the same reproductive
mode (i.e. brooding or broadcasting).

In B. europaea, no relationship was found between
the degree of genetic differentiation among populations
and their geographic distance of separation. On the
other hand, in B. elegans (the only congeneric species
whose population genetics has been studied), there is an
inverse correlation between the extent of gene flow and
the geographic distance separating populations (Hell-
berg 1994). The substantial differences between the two
species in relation to larval dispersal could partially
explain the differences in their populations’ genetic
structure (Wright 1943; Kimura and Weiss 1964; Hell-
berg 1996). B. europaea has swimming larvae charac-
terised by neutral buoyancy and pelagic dispersal
(Goffredo and Zaccanti 2004). On the contrary, B. ele-
gans larvae are non-swimming, with negative buoyancy
and benthic dispersal (Gerrodette 1981). Given the
behaviour of larvae of B. elegans, we would expect gene
flow to occur exclusively between adjacent geographic
areas, with a consequent decrease in genetic correlation
with increasing geographic distance (the ‘‘stepping
stone’’ model; Kimura and Weiss 1964). However, the
larval behaviour of B. europaea does not support the
stepping stone model, and, therefore, the geographic
distance separating populations does not control gene
flow variation among the populations (Hellberg 1996;
Goffredo and Zaccanti 2004). A lack of correlation be-
tween geographic distance and genetic differentiation
has been observed frequently in marine populations (sea
urchins, Palumbi and Wilson 1990; antipatharian corals,
Miller 1997; sea anemones, Ayre et al. 1991; soft corals,
McFadden 1997). In B. europaea, genetic divergence
between populations could be due to different selective
pressures (Hedgecock 1986; Schoen and Brown 1991).
Also, the species’ reproductive biology could contribute
significantly to the genetic structure observed. A mating
system characterised by inbreeding through self-fertili-
sation may lead to co-coordinated genetic complexes,
allowing local adaptation and subsequent genetic dif-
ferentiation among populations (Schoen and Brown
1991; Knowlton and Jackson 1993; Pusey and Wolf
1996). Documented examples of inbreeding systems in
marine animals are rare (barnacles, Balanus improvisus,
Furman 1990; colonial ascidians, Botryllus schlosseri,
Grosberg 1991; solitary ascidians, Corella inflata, Cohen
1992; sea anemones, Epiactis prolifera, Bucklin et al.
1984). In plants, more documented cases exist, demon-
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strating a correlation between mating systems and
intraspecific variation in genetic diversity, as well as in
the effective size of the global population (Brown 1978;
Schoen and Brown 1991). Particularly, inbreeding sys-
tems appear to be associated with both high levels of
genetic variation between populations and high levels of
variation in effective population size (Schoen and Brown
1991).

Genetic differentiation at small spatial scales

Our results on the genetic differentiation between pat-
ches within the Calafuria population are in line with the
swimming behaviour of B. europaea larvae (Goffredo
and Zaccanti 2004). We found a genetic connection
among the Calafuria patches (8–40 m apart), while
patches of B. elegans 4–30 m apart are known to be
significantly subdivided (Hellberg 1994, 1995). We con-
clude that, while the crawling larvae of B. elegans are not
capable of sustaining significant genetic connectivity
among populations (even at small spatial scales), B.
europaea larvae are able to sustain genetic connectivity
among populations that are tens of meters apart.

Conclusions

The genetic structure of B. europaea is characterised by a
marked departure from Hardy–Weinberg equilibrium,
with a notable deficit of heterozygotes and a high rate of
inbreeding. The examined populations were fragmented
at large spatial scales, but genetically connected at
smaller ones. The mating system of B. europaea could
explain the observed genetic structure, since it is likely
characterised by self-fertilisation, with swimming pelagic
larvae that appear to guarantee genetic connectivity
among populations at small spatial scales.
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