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Abstract Information on the reproduction in scleractin-
ian solitary corals and in those living in temperate zones
is notably scant. Leptopsammia pruvoti is a solitary coral
living in the Mediterranean Sea and along Atlantic
coasts from Portugal to southern England. This coral
lives in shaded habitats, from the surface to 70 m in
depth, reaching population densities of >17,000 indi-
viduals m�2. In this paper, we discuss the morphological
aspects of sexual reproduction in this species. In a sep-
arate paper, we report the quantitative data on the an-
nual reproductive cycle and make an interspecific
comparison of reproductive traits among Dend-
rophylliidae aimed at defining different reproductive
strategies. The present study on L. pruvoti is the first in-
depth investigation of the reproductive biology of a
species of this genus. As expected for a member of the
family Dendrophylliidae, L. pruvoti is a gonochoric and
brooding coral. The gastrodermal tissue of the gameto-
genetic mesenteries we examined was swollen and
granular, which led us to hypothesize that interstitial
cells could have a trophic function favoring gameto-
genesis. Undifferentiated germ cells arose in the gastro-
dermis and subsequently migrated to the mesoglea,
where they completed gametogenesis. During spermary
development, spermary diameter increased from a min-
imum of 14 lm during the immature stages to a maxi-
mum of 410 lm during the mature stages. As oogenesis
progressed, we observed a gradual reduction in the nu-
cleus to cytoplasm ratio due to the steady synthesis of
yolk. During the final stages of oogenesis, after having
migrated to the extreme periphery of the oocyte and
having firmly adhered to the oolemma, the nucleus be-

came indented, assuming a sickle or dome shape. We can
hypothesize that the nucleus’ migration and change of
shape may have to do with facilitating fertilization and
determining the future embryonic axis. During oogene-
sis, oocyte diameter increased from a minimum of 20 lm
during the immature stage to a maximum of 680 lm
when mature. Embryogenesis took place in the coelen-
teron. We did not see any evidence that even hinted at
the formation of a blastocoel; embryonic development
proceeded via stereoblastulae with superficial cleavage.
Gastrulation took place by delamination. Early and late
embryos had diameters of 204–724 lm and 290–736 lm,
respectively. When released, the larvae had completed
ontogenesis and swam by a ciliary movement with the
aboral pole at the anterior, their shape varied from
spherical to cylindrical (in the latter the oral–aboral axis
measured 695–1,595 lm and the transversal one mea-
sured 267–633 lm).

Introduction

Sexual reproduction, which entails the dispersal of
genetically unique larval recruits, plays a crucial role in
the life cycle and guarantees the survival and evolution
of the community (Harrison and Wallace 1990; Hughes
et al. 1992). Information on sexual reproduction is
essential to understanding genetic structure and popu-
lation connectivity and their effects on population
dynamics, as well as to understanding the resistance and
resilience of populations vis à vis natural and anthro-
pogenic disturbances (Connell and Keough 1985). Basic
data includes sexuality (hermaphroditic or gonochoric),
reproductive mode (broadcasting or brooding), embry-
onic and larval development.

Studies to date on sexual reproduction in scleractin-
ians have been almost exclusively on tropical and sub-
tropical colonial corals (Fadlallah 1983a; Harrison et al.
1984; Shlesinger and Loya 1985; Szmant 1986; Harrison
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and Wallace 1990; Richmond and Hunter 1990; Rich-
mond 1997). In most cases, reproduction is character-
ized by hermaphroditism and broadcasting, and by an
annual gametogenic cycle that ends with a short period
during which germ cells are released into the environ-
ment. Temperature, photoperiod, tides and lunar phases
seem to play a role in synchronizing gametogenic pro-
cesses.

We do not have much information on temperate
scleractinians (Beauchamp 1993; Harii et al. 2001;
Heltzel and Babcock 2002). Aside from recent work by
Goffredo et al. (2002, and references therein), studies
from the Mediterranean basin date back to the 19th
century, to the work of Lacaze-Duthiers (1873, 1897).
Finally, as noted by Heltzel and Babcock (2002), most
studies focus on colonial corals, leaving a lack of
knowledge on solitary species. Given the importance of
reproduction and recruitment to survival recovery fol-
lowing disturbances, and for the broader conservation
and management of scleractinian species, widening our
knowledge would help us to construct a database that
would allow comparisons of different life-strategy
adaptations in scleractinians, as well as between solitary
and colonial organisms in general (Harrison and Wal-
lace 1990).

Dendrophylliidae is a cosmopolitan taxon of colonial
or solitary corals, comprising 148 extant species divided
into 19 genera (Avian et al. 1995; Cairns 1999; Cairns
et al. 1999). There are seven species of Dendrophylliidae
living in the Mediterranean today, subdivided into five
genera, two of which, Balanophyllia and Leptopsammia,
are solitary. Systematics of these two genera is not clear,
some authors consider them to be synonymous (Balan-
ophyllia=Leptopsammia in Vaughan and Wells 1943;
Wells 1956; Fadlallah 1983a; Heltzel and Babcock
2002), while others argue that they are two separate taxa
(Zibrowius 1980; Cairns et al. 1999). We agree with
Cairns et al. (1999) and their most recent list of extant
species of Scleractinia, in which Leptopsammia and
Balanophyllia are recorded as two distinct taxa.

According to Cairns et al. (1999), the genus Leptop-
sammia comprises ten species, geographically distributed
in the Atlantic, Indian and central-western Pacific
Oceans. There is only one species, Leptopsammia pruvoti
Lacaze-Duthiers, 1897, living in the Mediterranean
(Avian et al. 1995). L. pruvoti has also been reported
along Atlantic coasts from Portugal to southern Eng-
land. Along the species’ distributional area, the mean
annual sea surface temperature ranges from 12�C, in
southern England, to 19�C, in the Mediterranean. This
species tends to live in shaded habitats, under overhangs
and in grottos, at depths ranging from the surface to
70 m (Zibrowius 1980). The species reaches an average
population density of 4,000–17,000 individuals m�2 at
depths ranging between 15 and 21 m (authors’ personal
observations). There is not much information on the
biology of this species. The only data available con-
cerning reproduction dates back >100 years (Lacaze-
Duthiers 1897) from samples collected in the Golfe du

Lion, near Marseilles. The author reported sex-sepa-
rated individuals and embryonic development within the
coelenteron of females.

We are currently studying sexual reproduction in
L. pruvoti living in the eastern Ligurian Sea near Leg-
horn. We are conducting morphological, cyto-histo-
metric and quantitative studies on the gametogenesis,
embryonic development and larval stages of these
organisms, as well as genetic and population dynamics
studies (manuscripts in preparation). The studies being
conducted on L. pruvoti are part of a broader research
framework that we have developed to fill the gaps in our
knowledge of the biology of Mediterranean scleractin-
ians (Goffredo and Telò 1998; Goffredo et al. 2000,
2002, 2004a, 2004b; Goffredo and Zaccanti 2004). In this
paper we describe morphological aspects of spermato-
genesis, oogenesis, embryogenesis and larval develop-
ment in L. pruvoti. In a separate paper, we will report on
quantitative data regarding the annual reproductive
cycle, including the size of individuals at sexual matu-
rity, sex ratio, the cyto-histometric analyses of gameto-
genesis, a comparison of gonadal development with
environmental parameters, seasonality in sexual devel-
opment and planulation, and fecundity.

Materials and methods

Polyps of Leptopsammia pruvoti were collected at Cala-
furia (Leghorn; 43�28.4¢N; 10�20¢E) in 18 monthly
samplings from July 2001 to December 2002. Divers
took samples at depths of 15–17 m (see Goffredo et al.
2004a for a description of the habitat and topography of
the sampling area).

We made sure that the samples, made up of 12
specimens each, included the entire size range of the
population (1–8 mm maximum diameter of the oral
disc). Biometric analyses were performed in the field;
length (L, maximum diameter of the oral disc), width (l,
minimum diameter of the oral disc) and height (h, oral–
aboral diameter of the polyp) were measured. Volume
(V) was calculated using the formula:

V ¼ h � L=2ð Þ � l=2ð Þ � p ð1Þ

(after Goffredo et al. 2002).
Specimens were then fixed and transferred to the

laboratories for histological analysis. After decalcifica-
tion and dehydration, the polyps were embedded in
paraffin and serial transverse sections were cut at 7-lm
intervals from the oral to the aboral poles.

Histological observations of gametogenesis and
embryogenesis were made under a light microscope.
Cyto-histological readings were made with a LEICA
Q5001 W image analyzer. We measured the maximum
and minimum diameters of the spermaries and of the
oocytes in nucleated sections. The size of each repro-
ductive element was determined as the average of the
two diameters. In accordance with earlier studies on
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gametogenesis in scleractinians by Beauchamp (1993),
Kramarsky-Winter and Loya (1998), Kruger and
Schleyer (1998), Glynn et al. (2000) and Goffredo et al.
(2002), the spermaries were classified in five develop-
mental stages.

A binocular microscope was used for morphological
observations of live larvae released by specimens col-
lected from the sea during the month of March, 2003.

Results

Sexual condition and reproductive mode

For this study, we performed histological analysis on 52
specimens, collected in the 14 samplings carried out
from 30 July 2001 to 24 August 2002. We found the
species Leptopsammia pruvoti (Fig. 1) to be sex sepa-
rated. All specimens examined had either male or female
germ cells (Figs. 2, 3); none had both types. We did not
observe sexual dimorphism, nor were there significant
differences in average body size between males and fe-
males (length: males=5.1 mm, SE=0.2, N=26, fema-
les=5.0 mm, SE=0.2, N=25, student’s t-test P>0.5;
volume: males=74.7 mm3, SE=8.2, N=26, fema-
les=70.1 mm3, SE=6.8, N=25, student’s t-test P>0.5).
Only one specimen collected in May and smaller than
the average size of the others did not have differentiated
germ cells; we considered it to be sexually immature.
Some females had embryos in the coelenteron, indicat-
ing a brooding reproductive mode (Fig. 4).

Spermaries and oocytes

The gastrodermal tissue lining the mesenteries with
clearly visible gametocytes was swollen and had a
granular appearance (Figs. 2A, B, 3A, B).

The spermaries (Fig. 2) were made up of groups of
germ cells, located in the mesentery, and delineated by

the mesogleal envelope. We identified five developmental
stages:
Stage I—Undifferentiated germ cells arose in the
gastrodermis and then migrated towards the mesoglea
of the mesentery where they regrouped forming the
spermary. The spermary was made up of an early
aggregation of three to ten spermatogonia (Fig. 2A).
Spermaries had a diameter of 36 lm (SE=0.7,
N=299) and seemed to grow larger as they incorpo-
rated additional spermatogonia.

Stage II—the spermary was made up of a group of
spermatocytes undergoing meiosis (Fig. 2B). The
mesogleal layer enveloping the spermary had not yet
formed a wall. Spermary diameter was 58 lm
(SE=0.8, N=647).

Stage III—the spermary, made up of a group of
spermatocytes undergoing meiosis, was delineated by
a clearly differentiated wall formed by the mesoglea
(Fig. 2C). Spermary diameter was 86 lm (SE=0.6,
N=4,134).

Stage IV—the spermary showed a centripetal matu-
ration gradient in that less mature and larger germ
cells (spermatocytes) were located on the periphery of
the spermary, while more mature and smaller ones
(spermatids) were located in the center (Fig. 2D, E).
Spermatid tails were projecting towards the sper-
mary’s central cavity (Fig. 2E). Spermary diameter
was 127 lm (SE=1.6, N=1,468).

Stage V—the spermary was made up of a mass of
spermatozoa with their tails projecting in the same
direction (an arrangement known as a ‘‘bouquet’’;
Fadlallah and Pearse 1982; Glynn et al. 1991, 1996,
2000; Fan and Dai 1998; Neves and Pires 2002;
Fig. 2F–H). At the time of fertilization, the sperma-
tozoa were released into the coelenteron (Fig. 2G, H);
the spent spermary left an empty cavity in the mes-
entery (Fig. 2H). Spermary diameter was 130 lm
(SE=2.3, N=563).

The oocytes were oval-shaped and located in the
mesenteries (Fig. 3). The early stages of oogenesis were
visible in the mesentery’s gastrodermal layers (Fig. 3A).
Early oocytes had a diameter ranging from 20 to 34 lm,
a centrally located spherical nucleus, a high ratio of
nucleus to cytoplasm and a homogeneous cytoplasm.
The intermediate stages of oogenesis developed in the
mesoglea of the mesenteries (Fig. 3B, C). Intermediate
stage oocytes were enveloped by the mesogleal layer and
had a diameter ranging from 30 to 345 lm. The nucleus
was spherical, and yolk had begun to accumulate,
causing a reduction in the ratio of nucleus to cytoplasm.
In the late stages of oogenesis, the oocytes were still
located in the mesenteries and enveloped by the mes-
ogleal layer, with a diameter ranging from 340 to
680 lm (Fig. 3D–F). During the late stages, yolk syn-
thesis and differentiation were completed. The nucleus

Fig. 1 Leptopsammia pruvoti. Specimens photographed at Cala-
furia (Leghorn; 43�28.4¢N; 10�20¢E) at 16 m depth
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had also migrated to the cell’s periphery, and adhering
closely to the cell membrane it changed shape, becoming
indented and concave (Fig. 3E, F). During oogenesis,
the nucleolus was always positioned on the periphery of
the nucleus (Fig. 3A–C, F).

Embryos and larvae

While the oocytes were found inside the mesenteries,
embryos were located in the coelenteron (Fig. 4). Early-
stage embryos were stereoblastulae (they were solid and
lacked blastocoels). A cleavaged superficial layer was
visible surrounding a central yolk mass (Fig. 4A, B).
Stereoblastulae had diameters ranging from 204 to

724 lm. During the intermediate stage, called stereo-
gastrula because there was no archenteron, gastrulation
by delamination took place (Fig. 4C, D). The ectoderm
layer was clearly differentiated and appeared separated
from the endodermal mass by a clearly defined mesog-
leal layer. At this stage of development, the ectoderm
was made up of a columnar epithelium, in which dif-
ferentiated cnidocytes were visible (Fig. 4D). Stereo-
gastrulae had diameters ranging from 204 to 601 lm. At
late stage, the stereogastrulae had developed a stomo-
deum and mesenteries (Fig. 4E–G). The differentiation
of the stomodeum began with the proliferation of ecto-
derm cells and their invagination towards the center of
the embryo (Fig. 4E, F). Mesentery differentiation
started with the invagination of the mesogleal layer
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towards the center of the embryo, followed by the for-
mation of the mesenterial filament via the apposition of
endoderm cells to the mesentery’s free edge (Fig. 4G).
Late stereogastrulae had diameters ranging from 290 to
736 lm.

When released, larvae had completed ontogenesis
(differentiated mouth and pharynx, the gastrovascular
cavity was divided into compartments by mesenteric
septa; Fig. 5). The normally pear-shaped larvae were able
to contract and become more spherical or to stretch out

Fig. 2A–H Leptopsammia pruvoti. Spermary developmental
stages. A Early stage. Undifferentiated germ cells are lined up in
the mesenteries’ gastrodermal layers (arrows). Spermaries are
formed by the migration of undifferentiated germ cells that move
from the gastrodermis and cluster in the mesoglea. Stage I is made
up of a group of spermatogonia. B Stage II: the spermary is made
up of a group of spermatocytes undergoing meiosis. Note how the
gastrodermis is swollen and granular. C Stage III: the spermary,
containing spermatocytes undergoing meiosis, is delineated by a
wall that has arisen from the mesoglea (arrows). D Stage IV: the
spermary presents an external layer of spermatocytes and an
internal mass of spermatids. E Stage IV: spermatocytes are visible
on the spermary’s periphery, while spermatids with their tails facing
the central cavity are visible on the inside (arrows). F Stage V: the
spermary is made up of a mass of spermatozoa. G Stage V: shortly
before leaving the spermary, mature spermatozoa form ‘‘bou-
quets’’, with their tails all facing in the same direction. Some
spermatozoa are leaving the spermary (arrows). H Stage V: some
spent spermaries (arrows) are visible next to the mature spermaries
still in the process of releasing spermatozoa (c spermatozoa tails; cc
coelentric cavity; fm mesenterial filament; g gastrodermis; m
mesoglea; sdi spermatids; sni spermatogonia; sti spermatocytes;
szoi spermatozoa; I, II, III, IV, V spermary developmental stage,
see ‘‘Results’’)

Fig. 3A–F Leptopsammia pruvoti. Oogenesis. A Early stage.
Previtellogenic oocyte located in the gastrodermis of a mesentery
is characterized by a high nucleus to cytoplasm ratio. Note the
granular texture of the gastrodermis surrounding the oocyte, this is
due to the high number of granules or cellular nuclei inside the
unstained cells. B Intermediate stage. Vitellogenic oocyte located in
one of the mesenteries. Note the gastrodermis’ granular texture,
due to granules or cellular nuclei. C Intermediate stage. Two
vitellogenic oocytes located in one of the mesenteries. The ratio
nucleus to cytoplasm has diminished. Spherical nuclei with a single
nucleolus are still located in the center of the cells. The cytoplasm
has a homogeneous appearance. A small early oocyte is visible in
the section. D Late stage. The ooplasm has started to differentiate,
yolk plates are now present. The spherical nucleus has started to
migrate towards the cell’s periphery. E Late stage. The nucleus has
become concave and is now located on the cell’s periphery where it
has begun to adhere to an invagination of the plasma membrane.
The ooplasm is full of yolk plates. F Late stage. Detail of the
nucleus in a mature oocyte. The nuclear membrane is strongly
adherent to the cellular membrane (arrow). The nucleolus is located
close to the bottom of the plasma membrane invagination (cc
coelenteric cavity; g gastrodermis; fm mesenterial filament; O
oocyte; N nucleus; n nucleolus; pt yolk plates; ss skeletal septum)

b
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and become more cylindrical (Fig. 5A–C). When elon-
gated and cylindrical in shape, their maximum diameters
(oral–aboral axis) ranged from 695 to 1,595 lm and their
minimum diameters (transversal axis) from 267 to
633 lm. Motion was achieved via ciliary movement with
the aboral pole leading (Fig. 5A–C). The orange-yellow
color is similar to that of adult polyps.

Discussion and conclusions

Examination of the literature reveals that our study of
Leptopsammia pruvoti is the first in-depth investigation
of the reproductive biology in a species of this genus. In
this paper, we present the morphological aspects of
gametogenesis and ontogenesis. Quantitative and eco-
logical aspects of the annual sexual reproductive cycle
will be presented in a separate paper.

The gonochorism and brooding found in the organ-
isms studied support the sexuality and reproductive
mode one expects to find in Dendrophylliidae, since

hermaphroditism (found in 27% of the species studied)
and broadcasting (found in 39%) are minority repro-
ductive conditions in this taxon (Table 1). According to
several authors, while sexual condition (gonochorism vs.
hermaphroditism) in scleractinians tends to be phylo-
genetically correlated and therefore constant through
genera and families, reproductive mode (brooding vs.
broadcasting) tends to be adaptive and therefore vari-
able (Stimson 1978; Szmant 1986; Harrison 1985;
Richmond and Hunter 1990; Ward 1992; Shlesinger
et al. 1998; Fautin 2002). In fact, existing data on
Dendrophylliidae suggest that there is a greater vari-
ability in reproductive mode than in sexual condition
(Table 1). Further studies are needed to ascertain the
validity of the reproductive pattern that emerges in
Dendrophylliidae, i.e. gonochorism associated with
brooding, which is contrary to the pattern found in most
scleractinians, i.e. hermaphroditism associated with
broadcasting (Szmant 1986; Harrison and Wallace 1990;
Richmond and Hunter 1990; Soong 1991; Richmond
1997; Shlesinger et al. 1998; Fautin 2002).

Fig. 4A–G Leptopsammia
pruvoti. Embryonic
development. A Stereoblastula
(early stage) located in the
coelenteron. B Detail of the
stereoblastula. The cleavaged
superficial layer surrounds the
central yolk mass. C
Stereogastrula (intermediate
stage). At this stage of
development, the ectoderm is
clearly distinct from the
endoderm. The two layers are
divided by the mesoglea
(arrows). D Detail of the
periphery of the stereogastrula;
the three embryonic
layers—endoderm, mesoglea
and ectoderm—are evident.
There are some cnidocytes
(arrow) in the ectoderm. E Late
stereogastrula, showing the
stomodeal invagination;
mesentery differentiation has
begun (arrows). F Detail of the
late stereogastrula. Ectodermal
cells have begun to multiply,
forming an invagination at the
embryo’s oral pole (arrow); the
stomodeum has begun to
differentiate. G Detail of the
late stereogastrula in which a
mesentery has begun to
differentiate. The first phase of
mesentery differentiation is in
the introflection of the mesoglea
(arrow). At the mesentery’s free
end, a mesenterial filament has
formed by apposition of
endodermal cells (b blastoderm;
ec ectoderm; en endoderm; f
pharynx; fm mesenterial
filament; m mesoglea; s
stomodeal invagination; t yolk)
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Although accessory or nutritive cells have not gen-
erally been reported during scleractinian gametogenesis
(Fadlallah 1983a), the swollen and granular appearance
of gastrodermal tissue observed in the mesenteries could
have a trophic role supporting gametogenesis. This
trophic function may be operated by interstitial cells.
Similar scenarios have been described for other sclerac-
tinians (see Glynn et al. 1996, and references therein).

Morphological investigations at the ultrastructural level
could yield more information on the possible trophic
role played by the granular masses in gametogenesis.

Basic histological descriptions of spermary develop-
ment generally match those of other scleractinians of
this and other families with the same or different
reproductive traits. For example, aspects of male gona-
dal development matching those of L. pruvoti have been
described, among Dendrophylliidae, in the gonochoric
and broadcasting Heteropsammia aequicostatus and
Heteropsammia cochlea (Harriott 1983), in the gonoch-
oric and brooding Balanophyllia elegans (Fadlallah and
Pearse 1982; Beauchamp 1993) and in the hermaphro-
ditic and brooding Balanophyllia europaea (Goffredo
et al. 2002), as well as in members of other families: in
the gonochoric and broadcasting Fungiacyathus maren-
zelleri (Fungiacyathidae; Waller et al. 2002), in the go-
nochoric and brooding Monomyces rubrum (Flabellidae;
Heltzel and Babcock 2002), in the hermaphroditic and
broadcasting Mussismilia hispida (Mussidae; Neves and
Pires 2002) and in the hermaphroditic and brooding
genus Madracis (Pocilloporidae; Vermeij et al. 2004).

While histological aspects of male gonadogenesis re-
main substantially constant in scleractinians, female
gonadal development varies in late-stage oogenesis with
respect to fertilization and development (Harrison 1988;
Fautin et al. 1989; Soong 1991). Brooding species
generally produce a relatively small number of rather
large-sized oocytes containing substantial deutoplas-
matic reserves (Fadlallah 1983a; Richmond and Hunter
1990; Shlesinger et al. 1998). Oogenesis in L. pruvoti
seems to follow this pattern. Moreover, during the final
phases of oogenesis, a singular process of nuclear dif-
ferentiation takes place. The occurrence of this process is
not clear in female scleractinian gametogenesis. After
migrating to the cell’s periphery, as normally occurs
during oogenesis in scleractinians, and more generally in
anthozoans (Szmant-Froelich et al. 1985), the nucleus:
(1) adheres closely to the cell membrane and (2) under-
goes deformation, becoming notably concave and in-
dented; at this point, the nucleolus is located next to the
base of the indentation. A similar situation, in which the
nucleus affixes itself in this manner to the oolemma and
becomes indented taking on a sickle, dome or ‘‘U’’
shape, has been observed in mature oocytes of other
scleractinians across taxonomic classifications, sexual
conditions and reproductive modes: in Favia fragum
(hermaphroditic and brooding, Faviidae; Szmant-Froe-
lich et al. 1985), in Porites porites (gonochoric and
brooding, Poritidae; Tomascik and Sander 1987), in
Pocillopora damicornis and Pocillopora elegans (her-
maphroditic and broadcasting, Pocilloporidae; Glynn
et al. 1991), in species of the genus Pavona and in
Gardineroseris planulata (hermaphroditic and broad-
casting, Agariciidae; Glynn et al. 1996, 2000), in
Balanophyllia europaea (hermaphroditic and brooding,
Dendrophylliidae; Goffredo et al. 2002) and in Mono-
myces rubrum (gonochoric and brooding, Flabellidae;
Heltzel and Babcock 2002). Szmant-Froelich et al.

Fig. 5A–C Leptopsammia pruvoti. Larval phase. A A contracted,
spherical-shaped natant planula. The arrow indicates the direction
of movement. B A partially contracted natant, pear-shaped
planula. The arrow indicates the direction of movement. C An
elongated cylindrically shaped natant planula. The arrow indicates
the direction of movement (AP aboral pole; OP oral pole)
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(1985) suggest that the indentation of the nucleus serves
to facilitate fertilization. These authors suggest, partic-
ularly in brooding species, gametes of opposite sexes
unite when the oocyte is still in the mesentery and that
the mesenterial gastrodermis adjacent to the indentation
of the nucleus represents a site of easy penetration for
the spermatozoa. Since we found mature oocytes
exclusively inside the mesenteries and never observed
them in the coelentric cavity, we can hypothesize that the
union of gametes could occur when the oocytes are still
in the mesentery. From histological evidence and fertil-
ization experiments, Heltzel and Babcock (2002) also
deduced that in Monomyces rubrum (a brooding species
in which mature oocytes have an indented nucleus) oo-
cytes remain inside the mesentery’s mesogleal layer until
they are fertilized, and only then do they enter the
polyp’s gastrovascular cavity. Another possible expla-
nation is that these cellular processes may be oogenic

phases involved in determining the embryo’s future
oral–aboral axis (Van Buskirk and Schüpbach 1999; Lei
and Warrior 2000; Riechmann and Ephrussi 2001).

There is no evidence of formation of a blastocoel
during embryogenesis, embryonic development proceeds
via stereoblastulae, and subsequent gastrulation occurs
by delamination rather than invagination. This is the
case for other brooding scleractinians as well, whose
embryology has been studied in detail: Favia fragum
(Szmant-Froelich et al. 1985), Balanophyllia europaea
(Goffredo and Telò 1998), Pocillopora damicornis (Diah
Permata et al. 2000) and Monomyces rubrum (Heltzel
and Babcock 2002). Authors have suggested that gas-
trulation occurs by delamination, even in the brooding
Balanophyllia elegans (Fadlallah and Pearse 1982).
Similarly, in many brooding octocorals, development
progresses by means of solid stereoblastulae (see
Table 2). Thus, generally in scleractinians and octoco-

Table 1 Reproductive traits found in the literature on Dendrophyllidae corals (h hermaphroditic; g gonochoric; – unknown; b brooder; bs
broadcast spawner)

Species Sexual
condition

Reproductive
mode

Source

Astroides calycularis h b Lacaze-Duthiers 1873; Fadlallah 1983a
Balanophyllia elegans g b Fadlallah 1981; Fadlallah and Pearse 1982; Fadlallah 1983b;

Beauchamp 1993
Balanophyllia europaea h b Goffredo and Telò 1998; Goffredo et al. 2000, 2002
Balanophyllia regia – b Lacaze-Duthiers 1897; Yonge 1932; Lyons 1973; Kinchington 1981;

Fadlallah 1983a
Balanophyllia sp. – b Abe 1937; Fadlallah 1983a; Richmond and Hunter 1990
Cladpsammia rolandi h b Lacaze-Duthiers 1897; Fadlallah 1983a
Dendrophyllia manni – b Edmondson 1929, 1946; Fadlallah 1983a; Richmond and Hunter 1990
Dendrophyllia sp. g b Babcock et al. 1986; Richmond and Hunter 1990
Heteropsammia aequicostatus g bs Harriott 1983; Richmond and Hunter 1990
Heteropsammia cochlea g bs Harriott 1983; Richmond and Hunter 1990
Leptopsammia pruvoti g b Lacaze-Duthiers 1897; present work
Rhizopsammia minuta – b Abe 1939; Fadlallah 1983a
Stephanophyllia formosissima – b Moseley 1881; Fadlallah 1983a
Tubastrea aurea – b Edmondson 1929, 1946; Fadlallah 1983a
Tubastrea coccinea – b Edmondson 1929, 1946; Richmond and Hunter 1990
Tubastrea faulkneri g b Babcock et al. 1986; Richmond and Hunter 1990
Turbinaria bifrons – bs Babcock et al. 1994
Turbinaria frondens g bs Willis et al. 1985; Richmond and Hunter 1990
Turbinaria frondens – bs Babcock et al. 1994
Turbinaria mesenterina – bs Babcock et al. 1994
Turbinaria peltata – bs Babcock et al. 1994
Turbinaria radicalis – bs Babcock et al. 1994
Turbinaria reniformis g bs Willis et al. 1985; Richmond and Hunter 1990; Babcock et al. 1994

Table 2 Brooding octocorals in which development progresses by means of solid stereoblastulae

Species Order Brooding mode Source

Parerythropodium fulvum
fulvum and Clavularia hamra

Alcyonacea Embryos are brooded in a layer of
mucous on the surface of the colonies

Benayahu and Loya 1983,
Benayahu 1989

Heliopora coerulea Helioporacea Brooding begins in the coelenteron and
ends on the surface of the colonies

Babcock 1990

Xenia umbellata Alcyonacea Brooding takes place in the coelenteron Benayahu et al. 1990
Xenia macrospiculata Alcyonacea Brooding takes place on the colony’s

surface in invaginations in the epiderm
Achituv et al. 1992

Anthelia glauca Alcyonacea Embryos are brooded in pharyngeal pouches Kruger et al. 1998
Pseudopterogorgia elisabethae Gorgonacea Embryos are brooded in a layer of

mucous on the surface of the colonies
Gutiérrez-Rodrı́guez
and Lasker 2004
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rals, the type of embryogenesis normally associated with
brooding appears to be by means of stereoblastulae. On
the contrary, data from 24 scleractinians (Szmant-
Froelich et al. 1980; Babcock and Heyward 1986; Shle-
singer and Loya 1991; Hirose et al. 2000) plus the
pennatulacean octocoral Ptilosarcus guerneyi (Chia and
Crawford 1973) suggest that embryogenesis associated
with broadcasting occurs by means of coeloblastulae.
There are, however, some known exceptions to this
pattern: coeloblastulae form in the scleractinian Mani-
cina areolata both in conditions of broadcasting and
brooding (Wilson 1888), the broadcasting scleractinian
Fungia scutaria produces stereoblastulae (Krupp 1983),
as does the broadcasting alcyonacean octocoral Den-
dronephthya hemprichi (Dahan and Benayahu 1998).
Babcock (1990) and Heltzel and Babcock (2002)
hypothesize that different embryonic formations may be
correlated to the availability of physical space during
ontogenic processes. These authors suggest that the re-
stricted amount of space for developing embryos in
brooding organisms constrains the formation of a solid
blastula, while external fertilization and embryonic
development in broadcasting organisms allows onto-
genesis to take place via a hollow blastula. Further
studies are needed, especially on embryogenesis in
broadcasting octocorals, for which there are few and
conflicting data, to verify the relationship between the
pattern of embryogenesis and the reproductive mode
that seems to be indicated in scleractinians and octoco-
rals.

As was expected for a brooding species of coral
(Harrison and Wallace 1990; Richmond and Hunter
1990), larval ontogenesis was complete at the time of
planulation; released larvae had a clearly formed and
differentiated mouth and pharynx, with the coelenteron
clearly compartmentalized by mesenteries. The planula’s
plastic and changeable shape, varying from contracted
spherical- to partially contracted pear- to an elongated
cylindrical-shape, is a trait common to anthozoan larvae
(see Chia and Crawford 1973 for pennatulacean planu-
lae; Benayahu 1989 for alcyonacean planulae; Hand and
Uhlinger 1992 for actiniarian planulae; Gutiérrez-Rod-
rı́guez and Lasker 2004 for gorgonacean planulae;
Goffredo and Zaccanti 2004 for scleractinian planulae).
Another frequently observed trait was the ciliary
movements that larvae used for propulsion with the
aboral pole leading (see Atoda 1951; Hartnoll 1977;
Goffredo and Zaccanti 2004). The larvae we measured
were smaller when compared to the larvae of other
solitary brooding corals of the same family (oral–aboral
axis of planulae ranged from 695 to 1,595 lm in L.
pruvoti; compared to 2,150 lm in Balanophyllia euro-
paea, Goffredo and Zaccanti 2004; and 4,000 lm in
Balanophyllia legans, Fadlallah and Pearse 1982). The
positions on the r–K (maximum population increase–
maximum competitive ability) continuum (Pianka 1970)
of the different reproductive strategies associated with
planula size will be presented in a separate paper. In that
same paper we will also present data on fecundity and

incubation time for embryos fundamental to the inter-
specific comparison of reproductive traits.

Acknowledgements We wish to thank E. Manzardo, S. Arnone, M.
Pasquini, L. Tomesani, M. Longagnani, L. Podda and O. Panaro
for their valuable SCUBA assistance in collecting monthly samples.
Coral photographs are by G. Neto. R. Falconi gave us valuable
suggestions on earlier drafts of this paper, as well as assistance in
defining laboratory guidelines. O. Langmead (Marine Biological
Association of the United Kingdom) revised and significantly im-
proved this paper. We also thank two anonymous reviewers for
their valuable revision. M. Cesarini and E. Boschieri assisted in the
layout of the histological photographs and plates. The Marine
Science Group (http://www.marinesciencegroup.org) gave us sci-
entific, technical and logistical support. Bologna Scuba Team gave
us logistical support for the dives. Our research was supported by
the Ministero dell’Istruzione, dell’Università e della Ricerca
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