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ABSTRACT: Mediterranean corals are a natural model for
studying global warming, as the Mediterranean basin is
expected to be one of the most affected regions and the
increase in temperature is one of the greatest threats for coral
survival. We have analyzed for the first time with time-domain
nuclear magnetic resonance (TD-NMR) the porosity and
pore-space structure, important aspects of coral skeletons, of
two scleractinian corals, Balanophyllia europaea (zooxanthel-
late) and Leptopsammia pruvoti (nonzooxanthellate), taken
from three different sites on the western Italian coast along a
temperature gradient. Comparisons have been made with
mercury intrusion porosimetry and scanning electron micros-
copy images. TD-NMR parameters are sensitive to changes in
the pore structure of the two coral species. A parameter, related to the porosity, is larger for L. pruvoti than for B. europaea,
confirming previous non-NMR results. Another parameter representing the fraction of the pore volume with pore sizes of less
than 10−20 μm is inversely related, with a high degree of statistical significance, to the mass of the specimen and, for B. europaea,
to the temperature of the growing site. This effect in the zooxanthellate species, which could reduce its resistance to mechanical
stresses, may depend on an inhibition of the photosynthetic process at elevated temperatures and could have particular
consequences in determining the effects of global warming on these species.

■ INTRODUCTION

Corals and Global Warming. Global climate change is the
defining environmental issue of our times and is expected to
profoundly affect all levels of ecological hierarchies and a broad
array of terrestrial and marine ecosystems.1−5 Marine
communities are expected to be affected more than terrestrial
ones by the effects of climate change,6 especially in temperate
areas.7 Thus, the Mediterranean basin8 represents a natural
focus of interest for researchers and at the same time a natural
laboratory for modeling and predicting climate change and its
ecological effects. In particular, the increase in temperature is
one of the greatest threats for corals, which can be considered
as a probe of global warming effects, as it triggers bleaching
events and widespread mortality.9−11 Several recent mass

mortality events of Mediterranean corals have been reported as
being related to high temperatures.12−16

This study focuses on two scleractinian species of the
Mediterranean Sea, already studied as a model for climate
change: Balanophyllia europaea (Risso, 1826) and Leptopsam-
mia pruvoti (Lacaze-Duthiers, 1897)17 (Figure 1). B. europaea is
a solitary, zooxanthellate (i.e., symbiotic with unicellular algae
named zooxanthellae) coral, endemic to the Mediterranean Sea.
Its distribution is limited to depths of 0−50 m because of its
symbiosis with zooxanthellae, which require light.17−19 L.
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pruvoti is a nonzooxanthellate and solitary scleractinian coral,
distributed in the Mediterranean basin and along the European
Atlantic coast from Portugal to Southern England and Ireland.
Its distribution is limited to semienclosed rocky habitats, under
overhangs, in caverns, and in small crevices, at depths of 0−70
m.17,18 Corals were collected at three different Italian sites (see
Figure 2), where the porosity of the two species has been

studied previously,17along a latitude and sea surface temper-
ature (SST) gradient. Temperature, the variation of which is
mainly influenced by latitude,20 is linked to coral biometry,
physiology, and demography.21−23

Coral Porosity and Pore-Size Distribution. The porosity
(ratio of pore volume to sample volume) and pore-space
structure of mineralized tissues are crucially important in
determining overall properties and biological functions, such as
the coral skeleton resistance to natural and anthropogenic
breakage. They are important parameters for studying the
growth of scleractinian corals and the effects of abiotic and

anthropogenic influences on coral reefs.24 Of additional interest
is a good knowledge of the role of porosity in diagenesis.
The measured values of these parameters depend on the

measurement methods24,25 and can present spatial variations.26

This could be the reason why their dependence on environ-
mental conditions remains largely unstudied, notwithstanding
their importance and their variation with factors such as
exposure, temperature, latitude, depth, and species.
Recent investigations17,19,27 have shown that along the Italian

coast the porosity of B. europaea is positively correlated with
SST. There is concern for the future of this species17,27,28 in
relation to the current predictions of global warming by the
Intergovernmental Panel on Climate Change.7 On the other
hand, for L. pruvoti, both SST and solar radiation do not seem
to influence significantly the porosity or space colonization
potential.17,19,29 An important aspect is the possible hierarchical
structure of the porosity. Recently,30 the flaw tolerance in nacre
has been ascribed to the nanoparticle architecture of the
aragonite platelet, which makes a crack propagate in an
intergranular manner. The structure of porous media at
different length scales is of great importance also in the use
of corals as potential bone graft substitute material.31

Porosity and pore-size distributions can be investigated by
many methods.32−36 The results strongly depend on the
physical principles adopted and on the assumptions of pore
shape and connectivity (see the Supporting Information).
Porosity and pore-size distributions determined by mercury
intrusion porosimetry (MIP) for eight different coral species36

showed large differences, with diameters ranging from 0.2 to
100 μm. However, it has been emphasized that particle
compression and rupture can result from the high Hg pressure
used. Time-domain nuclear magnetic resonance (TD-NMR)37

has the advantage of being nondestructive and noninvasive.
TD-NMR and in particular magnetic resonance relaxometry of
1H nuclei of water saturating the pore space are efficient tools
for investigating pore-space structure. Known since the
1950s,38,39 and validated over time by comparison with MIP
and, for specific surface, the Brunauer, Emmett, Teller (BET)
method, it is now widely applied.40−52 It is particularly useful
for porous media with wide pore-sizes distributions, like those
of corals. In this paper, the distributions of the local transverse
relaxation time (T2) of

1H of water saturating the pore space of
the cleaned coral skeletons, corresponding to distributions of
“NMR pore sizes”, are used (more details on NMR and surface
effects in the Supporting Information). To the best of our

Figure 1. (a) Living polyp of B. europaea and (b) several living polyps of L. pruvoti.

Figure 2. Map of the sites in Italy where corals were collected.
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knowledge, this is the first time that this technique has been
applied in this kind of investigation of corals.

■ MATERIALS AND METHODS

Corals. Specimens of B. europaea and L. pruvoti (54
specimens in all) were randomly collected from three sites:
Calafuria (CL), Palinuro (PL), and Pantelleria Isle (PN) (see
Figure 2). Coral tissue was totally removed, and corals were
cleaned as described in ref 17. The skeletons were weighed to
determine the mass (m). The total volume (VT) was
determined,19 including the volume of the oral cavity. Then
the specimens were saturated with water for NMR measure-
ments. Further details are reported in the Supporting
Information.
Total NMR Signal, Microporosity, and Cutoff Defi-

nitions. The total NMR signal (SNMR), represented by the area
below each T2 distribution, is proportional to the volume of
water saturating the pore-space volume (VP). This signal
divided by the total sample volume gives a value proportional
to the total porosity of the specimen (see the Supporting
Information). The fraction of water with relaxation times over a
given interval of the distribution corresponds to the pore
volume fraction over a corresponding pore-size range. “NMR
microporosity”, “microporosity” for short, will indicate the
fraction of VP where the smaller pores are weakly coupled by
water diffusion to the large ones on the local relaxation time
scale. This can be accomplished if the slope of the distribution
shows a strong increase at a certain T2 value, to be chosen as
the point of separation between “smaller” and “larger” pores.
This relaxation time will be called the “cutoff”. The micro-
porosity is then defined as the fraction of 1H signal with a T2

smaller than the cutoff, divided by the total 1H signal.
Operatively, it is the ratio of the area under the distribution

for T2 smaller than the cutoff to the total area under the
distribution.

Statistical Analysis. Statistical analysis was performed
using Statistical Package STATA 9.0 (StataCorp LP). To test
the significance of the differences among species and growth
sites, parametric and nonparametric tests were performed.
Multivariate analyses were conducted using both ordinary least
squares (OLS) robust to outliers and a nonparametric
bootstrapping regression procedure following Efron,53 applied
to check the robustness of the results, that could be affected by
small sample bias. The models are described by the function

ε= + + +y a b m b SSTi i i i1 2 (1)

where index i refers to the n observations, yi is the value of the
dependent variable, and εi is the corresponding error.
Parameters a and bj (j = 1 or 2) are the best fit parameters,
to be determined by OLS referring to the independent variables
m and SST. More details can be found in the Supporting
Information.

■ RESULTS AND DISCUSSION
Figure 3 shows the T2 distributions of all B. europaea and L.
pruvoti specimens. All the distributions show a main peak at
long relaxation times and a long tail, with a smaller amplitude,
∼3 orders of magnitudes wide. The major shape difference
between the two species is the length of the tail. For B. europaea
(panels a, c, and e), the tails go down to T2 values of 0.1−0.2
ms, values shorter than those for L. pruvoti (panels b, d, and f).
The principal differences among each group are given by the
total areas and are due to the wide range of masses and volumes
of the specimens. In principle, the 1H signal can be produced by
sources other than water, namely, the intraskeletal organic
matrix, consisting of proteins, polysaccharides, and lipids. To
check this possibility, T2 distributions for a dry coral and the

Figure 3. T2 relaxation time distributions of the 1H NMR signal from samples of cleaned skeletons of B. europaea (left) and L. pruvoti (right), after
water saturation of the connected pore space. The samples were from three different sites. Distributions from all corals are represented (nine corals
for each site). The sites were Calafuria (a and b), Palinuro (c and d), and Pantelleria (e and f). The total NMR signal (SNMR) is represented by the
area below each T2 distribution and is proportional to the amount of water saturating the pore space and, therefore, to the volume of the connected
pore space itself.
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same after complete water saturation were obtained and are
shown in Figure 4. The discussion reported in the Supporting

Information (referring to refs 54−61) leads us to conclude that
in the distribution for the fully water saturated sample there is
no contribution to the signal from macromolecular nuclei and
only a maximum on the order of 2% could be attributed to
lipids.
To discuss the distributions in Figure 3 in terms of pore sizes,

one should get an approximate value for the radius of the pores
inside the coral. The inset in Figure 4 reports the MIP
distribution for the same specimen. The major fraction of the
pore volume is given by pores whose entrance radii are on the

order of tens of micrometers, while a minor fraction
corresponds to a 3 order of magnitude long tail of very small
pores, down to tens of nanometers. NMR and MIP results are
exceptionally similar and consistent. The two classes of pores
are easily distinguished also in the distributions in Figure 3, so
that the two parameters microporosity and cutoff were
determined for each distribution. The sharp boundary between
the two classes, with a cutoff in the T2 range of 200−400 ms,
suggests that the two classes of pores are not well connected by
water diffusion during a local relaxation time. Also, the long tail
indicates that these pores are poorly connected both to the
other small pores and to the large ones in the major class. On
the basis of the comparison with MIP, microporosity should
correspond to pore sizes in the range from ∼10 nm to ∼10−20
μm. The existence of a wide class of pores with sizes of less
than 10−20 μm is described well in the SEM images of both
species reported in Figure 5.
Table 1 lists means, standard errors, and statistical

significances of the differences between the two species by
both parametric and nonparametric tests for all the variables
considered: microporosity, cutoff, mass, total volume, SNMR,
and SNMR/VT. The two species behave differently with a high
degree of statistical significance (p < 0.01 for all variables,
including NMR parameters). In particular, the mass and total
volume for B. europaea are much larger than for L. pruvoti, and
vice versa, the total porosity estimated by the ratio SNMR/VT is
larger for L. pruvoti than for B. europaea. This result is
consistent with the higher porosity obtained for L. pruvoti by
previous non-NMR analysis,17 where the difference was
considered to be likely a consequence of the different habitats
of the two species.

Figure 4. T2 distribution of a dry coral (---) after 1 month in a
desiccator and that of the same coral after full water saturation (). In
the inset, the MIP results for the same coral are shown. On the x-axis
of the inset is given the pore throat radius distribution.

Figure 5. Scanning electron microscope pictures of a cross section of the tip region of a septum, the primary macroscopic structure of the coral
skeleton, from B. europaea (A−C) and L. pruvoti (D−F). The building blocks of the skeleton are formed of thin aragonite crystals or fibers (0.04−
0.05 μm in diameter), which form a three-dimensional structure. Their growth occurs in periodic layers and starts from the centers of calcification
(see the arrows). The texture of the fibers of aragonite and the distribution of centers of calcification depend on the species of coral and are
genetically controlled.
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Table 2 lists the differences in the means of the same species
among growing sites. For B. europaea, the differences have a
high degree of statistical significance for almost all variables.
Microporosity has the highest degree of significance (micro-
porosity, p < 0.01; cutoff, p < 0.05; mass and total volume, p <
0.1; SNMR, p < 0.05). For L. pruvoti, only NMR parameters
cutoff and microporosity show significant differences among
sites (p < 0.05−0.1).
Table S1 of the Supporting Information lists the results of

the correlation among variables performed separately for B.
europaea (part A) and L. pruvoti (part B). For both species,
pairs of variables, mass and total volume, mass and SNMR, and
total volume and SNMR, are significantly correlated (p < 0.01).
The correlations between microporosity and cutoff and
between microporosity and mass are statistically significant
for both species (p < 0.01 for B. europaea, and p < 0.05 for L.
pruvoti).
Figure 6 reveals a counterintuitive behavior: the longer the

cutoffs, the smaller the microporosities; at the first glance, one
would expect the contrary. The pore-space architecture differs
between samples with higher or lower cutoffs (between lower
or higher microporosities). The scatter plots in Figure S2 of the
Supporting Information and in Figure 7, showing cutoff versus
mass and microporosity versus mass, respectively, suggest that
the observed correlations between the cutoff and mass are
governed by the mass: the smaller the mass, the higher the
microporosity and the shorter the cutoff. As the mass of the

corals increases, both the cutoff (which separates the two main
pore classes) and the ratio between the fraction of the two pore
classes change, with larger pores becoming more abundant.
This effect is shown also by L. pruvoti, but it is not as marked as
in B. europaea because of the smaller range of masses of corals.
This is consistent with the gradual “filling up” of the smaller
pores with the growth of the coral. A secondary infilling of
skeletal pores in the older portion of the skeleton is a consistent
characteristic of the skeletal density of branches of tall

Table 1. Descriptive and Test Statistics Split by Speciesa

B. europaea L. pruvoti

n mean standard error n mean standard error t Z

microporosity (%) 27 31.3 1.6 26 38.6 2.1 2.79 6.66
cutoff (ms) 27 337 15 26 249 20 3.59 12.92
m (g) 27 0.88 0.15 26 0.25 0.04 3.92 11.19
VT (cm3) 27 0.92 0.17 27 0.20 0.03 4.13 17.46
SNMR (arbitrary units) 27 4060 820 27 1233 165 3.38 11.21
SNMR/VT (arbitrary units) 27 4800 275 27 6993 349 4.94 17.60

aNumber of observations (n), means, standard errors, and statistical significances of differences in microporosity, cutoff, mass (m), total volume (VT,
including the oral cavity), NMR signal (SNMR), and SNMR/VT for B. europaea and L. pruvoti. The values of the t test and Z test suggest a high degree
of statistical significance (p < 0.01) between the two species for all the variables considered.

Table 2. Descriptive and Test Statistics of the Same Data in Table 1 Split by Sitea

CL PL PN

n mean standard error n mean standard error n mean standard error F χ2

(A) B. europaea
microporosity 9 38.6 1.6 9 26.1 2.1 9 29.0 2.7 8.89b 11.83b

cutoff 9 283 18 9 361 23 9 367 28 3.98c 6.10c

m 9 0.42 0.11 9 1.3 0.3 9 0.9 0.3 3.35d 4.72d

VT 9 0.4 0.1 9 1.5 0.4 9 0.9 0.2 3.39d 4.70d

SNMR 9 1806 426 9 6990 1996 9 3382 792 4.42c 7.01c

SNMR/VT 9 4447 436 9 4860 301 9 5092 655 0.45 1.95
(B) L. pruvoti

microporosity 8 40.5 2.3 9 42.8 4.3 9 32.8 3.3 2.26 4.71d

cutoff 8 294 49 9 186 21 9 272 19 3.40d 6.88c

m 8 0.17 0.04 9 0.25 0.07 9 0.33 0.08 1.34 2.03
VT 9 0.15 0.03 9 0.17 0.05 9 0.28 0.06 2.19 3.27
SNMR 9 989 202 9 1090 246 9 1621 369 1.45 1.95
SNMR/VT 9 7700 729 9 7311 582 9 5967 334 2.53 4.17

aThe sites are Calafuria (CL), Palinuro (PL), and Pantelleria (PN). The variables and units are the same as in Table 1. The values of the F test and
χ2 test suggest statistical significance of differences among the three sites for B. europaea. For L. pruvoti, only NMR parameters microporosity and
cutoff show statistical significance, even if at a lower level. bp < 0.01. cp < 0.05. dp < 0.1.

Figure 6. Scatter plot of the cutoff vs microporosity for all the samples.
Filled symbols depict data for B. europaea, and empty symbols depict
data for L. pruvoti. The symbols for the three sites are triangles
(Calafuria), squares (Palinuro), and circles (Pantelleria).
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branching corals, in which growing tips are very porous while
basal regions are extremely dense.62

To study how microporosity, considered a dependent
variable, is affected by mass and SST, multiple-regression
analysis was performed (eq 1) both for all the specimens and
for the two species separately. Part A of Table 3 summarizes the
results. First, it is important to observe that from a statistical
point of view a potential correlation between m and SST does
not invalidate the results, as all the values of the variance
inflation factor (VIF) are ≪10. By considering all the
specimens, the variable mass (p < 0.01) and SST (p < 0.05)
significantly and negatively affect microporosity. In other
words, the larger the mass and the higher the temperature,
the smaller the microporosity. These relationships are mainly in
place in the B. europaea species. For L. pruvoti, only the mass
appears to be significantly related to the microporosity with a
high degree of significance (p < 0.05). That means that SST
appears to be a significant parameter in determining micro-
porosity for B. europaea even if it is not as important as mass.
The bootstrapping procedure (Table 3, part B) gives
robustness to the evidence showing that those are not driven
by small sample bias.
To better visualize and further discuss these relationships, the

linear dependencies among microporosity, mass, and SST, for
L. pruvoti and B. europaea separately, have been studied. Figure
S3 of the Supporting Information lists the scatter plots and

statistical significances. The results confirm the multivariate
analysis. For both L. pruvoti and B. europaea, SST does not
significantly affect mass, as the probability values of the slope of
the linear best fit are not statistically significant (p > 0.1).
Overall, the fact that the mass significantly affects microporosity
at least at the 5% level emerges (p < 0.05 for L. pruvoti, and p <
0.01 for B. europaea). Results for microporosity versus SST
show that a significant relationship exists for B. europaea (p <
0.05) but not for L. pruvoti (p > 0.1).
In a previous study,17 it has been shown that porosity

depends on temperature for B. europaea, but not for L. pruvoti.
It has been hypothesized that the increase in porosity with
temperature in the zooxanthellate species could depend on an
inhibition of the photosynthetic process at elevated temper-
atures,23,63 causing an attenuation of calcification64 with
possible negative consequences also for space colonization
and population density.19,27 The NMR results point in the same
direction and seem to indicate also that this effect could be
accompanied by a decrease in microporosity, meaning an
increase in the fraction of the largest pores in the pore space.
TD-NMR is a quick, noninvasive, nondestructive method

that does not use ionizing radiation, which can be applied to
gain insight into the pore-space architecture of scleractinian
corals, showing differences between species and growing sites,
and sensitivity to environmental changes. Of course, this
method, as well as MIP, BET, and the hydrostatic balance
method, provides information about the connected porosity
only and, as such, can be applied to systems with low fractions
of isolated pores. This method can provide information that
cannot be attained in other ways, like changes in the internal
architecture of corals described by microporosity and cutoff
with increasing mass and growing temperature. Even if this
method cannot spatially locate the heterogeneity of the pore
space, the existence of a clear cutoff in almost all the
distributions (a very high slope at a certain point of the
distribution) means that the smallest pores are not well
connected by diffusion on the NMR time scale (corresponding
to the local value of T2) to the largest ones. Moreover, the
NMR-defined parameter microporosity can quantify the ratio
between the volume of the smallest pores (sizes of less than
10−20 μm) and the total pore volume.
The increased fraction of larger pores in the zooxanthellate

corals with increasing SST values, which could reduce their

Figure 7. Scatter plot of microporosity vs mass for all the samples.
Filled symbols depict data for B. europaea, and empty symbols depict
data for L. pruvoti. The symbols of the three sites are triangles
(Calafuria), squares (Palinuro), and circles (Pantelleria).

Table 3. Regression Analysis for Microporositya

(A) OLS (B) bootstrap (5000 replications)

1 2 3 1 2 3

all B. europaea L. pruvoti all B. europaea L. pruvoti

m (g) −7.19b (−5.86) −4.69b (−3.28) −21.04c (−2.32) −6.88b (−4.69) −5.57b (−3.72) −22.47d (−1.79)
SST (°C) −3.53c (−2.41) −4.06c (−2.11) −2.53 (−0.96) −3.53c (−2.38) −3.34d (−1.76) −2.76 (−0.99)
constant 108.6b (3.85) 115.5b (3.12) 94.0d (1.85) 107.2b (3.70) 108.3b (2.95) 101.4d (1.77)
mean VIF
(maximum)

1.22 (1.33) 1.20 (1.24) 1.34 (1.43)

no. of observations 53 27 26 53 27 26
R2 adjusted 0.32 0.41 0.24 0.32 0.38 0.24
F test 30.7b 15.8b 4.7c

Wald χ2 43.2b 37.0b 6.2

aOLS robust to outliers (robust t statistics in parentheses) and bootstrap (values of bootstrapped Z test in parentheses). (1) All specimens, (2) B.
europaea, and (3) L. pruvoti. The coefficients in the columns are the parameters bj (j = 1 or 2) and the parameter a (constant) of eq 1, where yi is the
value of the microporosity for each observation considered. Values of VIF of ≪10 indicate that a possible correlation between m and SST does not
invalidate the results. bp < 0.01. cp < 0.05. dp < 0.1.
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resistance to mechanical stresses, could have particular
consequences in determining the effects of global warming on
these species.65 The described method will be applied in future
work to the effects of ocean acidification on the skeletal
properties of corals66 and other calcifying organisms.
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