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Abstract

Investments at the organismal level towards reproduction and growth are often used as indicators of health. Understanding
how such energy allocation varies with environmental conditions may, therefore, aid in predicting possible responses to
global climatic change in the near future. For example, variations in seawater temperature may alter the physiological
functioning, behavior, reproductive output and demographic traits (e.g., productivity) of marine organisms, leading to shifts
in the structure, spatial range, and abundance of populations. This study investigated variations in reproductive output
associated with local seawater temperature along a wide latitudinal gradient on the western Italian coast, in the
zooxanthellate Mediterranean coral, Balanophyllia europaea. Reproductive potential varied significantly among sites, where
B. europaea individuals from the warmest site experienced loss of oocytes during gametogenesis. Most of the early oocytes
from warmest sites did not reach maturity, possibly due to inhibition of metabolic processes at high temperatures, causing
B. europaea to reabsorb the oocytes and utilize them as energy for other vital functions. In a progressively warming
Mediterranean, the efficiency of the energy invested in reproduction could be considerably reduced in this species, thereby
affecting vital processes. Given the projected increase in seawater temperature as a consequence of global climate change,
the present study adds evidence to the threats posed by high temperatures to the survival of B. europaea in the next
decades.
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Introduction

Coral reefs, like many other ecosystems, are currently under-

going changes in biodiversity, ecosystem function, and resilience

due to rising seawater temperatures acting in synergy with

additional environmental pressures [1]. A rise in global average

temperature of 0.7uC since the start of the industrial revolution has

caused or contributed to significant losses of global coral cover

over the past few decades, and oceans are expected to experience a

further warming of 1.1–6.4uC within the 21st century [2]. Climatic

models [3] predict that the Mediterranean basin will be one of the

most impacted regions by the ongoing warming trend [4]. The

Mediterranean is already showing rates of seawater warming that

exceed threefold those of the global ocean [2,4], making it a

potential model for global scenarios to occur in the world’s marine

biota, and a natural focus of interest for research [5].

Increasing temperatures are having a strong impact on marine

systems [6]. Indeed, temperature is the major environmental

factor controlling invertebrate development, marine species

distributions and recruitment dynamics [7,8]. Seawater tempera-

ture increases will likely affect the population biology of coral

species by reducing reproductive capacity [9]. The harmful effects

of increasing temperature on coral reproduction include reduced

individual fecundity, egg quality, lowered fertilization success and

reduced recruitment through effects on post-fertilization processes

(e.g., embryonic development, larval development, survival,

settlement, metamorphosis, and early post-settlement growth)

[10,11]. The combined effects of fertilization failure and reduced

embryonic development in some coral species are likely to

exacerbate ecological impacts of climate change by reducing

biodiversity [12]. Several studies assessed the immediate and

delayed impacts of environmental change on Mediterranean

gorgonian colonies [11–14] including sublethal impacts on

reproductive effort [11,15,16,17], but few studies have examined

temperate solitary corals. Research focusing on reproductive

processes in regions with peculiar physical conditions is urgently

needed as a baseline against which to test the effects of climate

change on sexual reproduction (e.g. fecundity) [10,18] and

organismal performance, that are essential to understand popu-

lation dynamics of marine organisms [19].

Organismal performance under both ‘‘normal’’ and ‘‘stressful’’

conditions is mainly determined by the energetic status of the

individual, which can ultimately affect its fitness (i.e. reproductive

output). During prolonged periods of stress, the energy balance of
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a coral is negative and the organism is drawing on all biochemical

pools, and thus both storage and structural components for energy

could be compromised [20]. Shallow water reef corals strongly rely

on energy derived from photosynthesis by its symbiotic zooxan-

thellae [21]. In particular, key processes like gametogenesis [22],

larval longevity and settlement [23] are dependent on the

availability of stored energy as lipids that are reabsorbed when

resources are limited [24]. If metabolic processes involved in

recovery from stress deplete lipid reservoirs in oocytes, then fewer

resources are available for new egg production [25], significantly

affecting gametogenesis.

This study focused on an endemic zooxanthellate Mediterra-

nean scleractinian, Balanophyllia europaea (Fig. S1), a simultaneous

hermaphrodite and brooding coral [26]. There is growing concern

for the future of this endemic species in light of expected seawater

warming, since increasing temperature negatively affects B.

europaea skeletal density [27] (due to increased porosity [28]),

population abundance [29], population structure stability [30],

growth and calcification [28]. Our specific aim was to quantify the

reproductive output of B. europaea along a latitudinal gradient of

temperature. We expected to find a similar negative response of

reproductive output with increasing temperature.

Materials and Methods

Ethics Statement
This study was carried out following the fundamental ethical

principles. According to the European normative, there is no

active conservation measure for the Mediterranean scleractinian

coral studied here (B. europaea). The species is not protected in Italy,

nor is it subject to any regulations. Thus, no permit was needed to

sample specimens. For this study, sampling was limited strictly to

the number necessary and performed where the species has high

population density to minimize the impact of removing individuals

and preserve both the demographic and genetic structure of the

natural populations.

Specimens of B. europaea came from six sites along a latitudinal

gradient, from 44u209N to 36u459N (Fig. 1). Coral collection began

in June 2010 and ended in November 2012. During this period, 18

samples were taken monthly from five populations (Genova: April

2011-September 2012; Elba: December 2010-May 2012; Pali-

nuro: June 2010-November 2011; Scilla: June 2011-November

2012; Pantelleria: June 2011-November 2012), with a minimum of

15 polyps collected during each excursion. Data from Calafuria

population came from a previous study [26] in which samples were

collected from July 1997 to October 1998.

Biometric analyses were performed by measuring length (L,

maximum axis of the oral disc), width (W, minimum axis of the

oral disc) and height (h, oral–aboral axis) of each sampled polyp.

The volume (V) of the individual polyp was calculated using the

formula [26].

Polyps were post-fixed in Bouin solution. After decalcification in

EDTA and dehydration in a graded alcohol series from 80% to

100%, polyps were embedded in paraffin and serial transverse

sections were cut at 7 mm intervals along the oral-aboral axis, from

the oral to the aboral poles. Tissues were then stained with

Mayer’s haematoxylin and eosin [26].

Cytometric analyses were made with an optical microscope

using the image analyzer NIKON NIS-Elements D 3.2. The

maximum and minimum diameters of oocytes in nucleated

sections and spermaries were measured and the presence of

embryos in the coelenteric cavity was recorded. Spermaries were

classified into five developmental stages in accordance with earlier

studies on gametogenesis in scleractinians [19,31,32].

Reproductive output was defined through three reproductive

parameters: a) fecundity rate and spermary abundance, both defined as

Figure 1. Map of the Italian coastline indicating the sites where
corals were collected. Abbreviations and coordinates of the sites in
decreasing order of latitude: GN Genova, 44u209N, 9u089E; CL Calafuria,
43u279N, 10u219E; LB Elba Isle, 42u459N, 10u249E; PL Palinuro, 40u029N,
15u169E; SC Scilla, 38u019N, 15u389E; PN Pantelleria Isle, 36u459N,
11u579E.
doi:10.1371/journal.pone.0091792.g001

Table 1. Mean annual solar radiation (W/m2) and temperature (DT; uC) values of the sampled populations.

Population Code DT (6C) mean ± SE Solar radiation (W/m2) mean ± SE

Calafuria CL 17.7360.16 174.161.9

Elba LB 18.0760.24 184.962.3

Genova GN 18.1360.43 156.963.2

Scilla SC 18.7360.15 205.561.8

Palinuro PL 19.1460.14 194.662.7

Pantelleria PN 19.6960.05 218.260.5

DT sensors (I-Button DS1921H, Maxim Integrated Products), were placed at the sampling location, at 5–7 m depth in each population. Solar radiation (W/m2) was
collected from MFG satellites. The sites are arranged in order of increasing DT; SE, standard error.
doi:10.1371/journal.pone.0091792.t001
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the number of reproductive elements per body volume unit

(100 mm3); b) ‘‘gonadal’’ index, defined as the percentage of body

volume occupied by germ cells [26]); and c) reproductive element size,

defined as the average of the maximum and minimum diameter of

spermaries and oocytes in nucleated section [26].

Based on the reproductive season [26], gametal development in

B. europaea was divided in two gamete activity periods. The gametes

recruitment period [33,34] was defined as the post-fertilization period,

between June and September, generally characterized by: 1) a

stock of smaller oocytes; 2) the recruitment of new oocytes; and 3)

the beginning of spermary development [26]. The gametes maturity

period [33,34] was defined as the pre-fertilization period taking

place between December and March and generally characterized

by the presence of larger oocytes and advanced stage of

maturation of spermaries [26].

Temperature data (Depth Temperature – DT; uC) came from

temperature sensors (I-Button DS1921H, Maxim Integrated

Products), placed at the sampling location for each population.

Sensors recorded temperatures during the entire experimental

period. Sea Surface Temperature data (SST; uC) for each site were

recorded hourly from the National Mareographic Network of the

Institute for the Environmental Protection and Research (ISPRA,

available to http://www.mareografico.it). These data are mea-

sured by mareographic stations placed close to the sampling sites

using SM3810 manufactured by the Society for the Environmental

and Industrial monitoring (SIAP+MICROS). A linear regression

was produced between DT and SST data to estimate historical at-

depth temperatures. In this study we considered the average DT

temperature of the three years preceding the sampling (n = 36

monthly temperatures).

Solar radiation (W/m2) was collected from the archives of the

Satellite Application Facility on Climate Monitoring (CM-SAF/

EUMETSAT, available to http://www.cmsaf.eu), using real time

data sets based on intersensor calibrated radiances from MFG

satellites. Mean annual solar radiation of each site was obtained for

the 2.5u-latitude-by-longitude square associated with each of the

six sites. As for temperature, also for solar radiation we considered

the average of the three years preceding the sampling (n = 36

monthly solar radiation).

Data were checked for normality using a Kolmogorov-

Smirnov’s test and for variance homoskedasticity using a Levene’s

test. When assumptions for parametric statistics were not fulfilled,

a nonparametric test was used. The Kruskal–Wallis test is a non-

parametric alternative to the analysis of variance (ANOVA) and is

used to compare groups of means; it is useful for data that do not

meet ANOVA’s assumptions. The non-parametric Kruskal–Wallis

test was used to compare reproductive parameters among study

sites. The non-parametric Kolmogorov-Smirnov test was used to

compare the size-frequency distribution of reproductive elements

between populations and between the two periods. Student’s t test

was used to compare the mean oocytes and spermaries size of

populations between periods. Spearman’s rank correlation coeffi-

cient was used to calculate the significance of the correlations

between reproductive and environmental parameters. Spearman’s

rank correlation coefficient is an alternative to Pearson’s correla-

tion coefficient [35]. It is useful for data that are non-normally

distributed and do not meet the assumptions of Pearson’s

correlation coefficient [36]. All analyses were computed using

PASW Statistics 17.0.

Figure 2. Oocyte size/frequency distribution in the recruitment
and maturity periods. Distribution of the oocytes size during gamete
recruitment period (solid line) and gamete maturity period (dashed
line).
doi:10.1371/journal.pone.0091792.g002
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Results

Mean annual solar radiation (W/m2) and mean annual DT (uC)

were significantly different among sites (solar radiation, ANOVA,

p,0.001; DT, Kruskal-Wallis, p,0.05; Table 1; Fig S2).

All populations contained both oocytes and spermaries during

both reproductive periods, while embryos were detected only

between June and September (gametes recruitment period). The

oocyte size/frequency distribution of June-September (gametes

recruitment period) was significantly different from that of

December-March (gametes maturity period), in all populations

(Kolmogorov-Smirnov, p,0.001; Fig. 2). Within June and

September (gametes recruitment period) most oocytes were

smaller than 400 mm, in all populations. In the following season

(December-March, gametes maturity period), two distinct oocyte

stocks appeared in all populations, characterized respectively by

small (immature,400 mm) and large (mature .400 mm) cells

(Fig. 2). The mean oocyte size of June-September (gametes

recruitment period) was significantly lower than that of December-

March (gametes maturity period) in all populations (Student’s t-

test, p,0.001; Table 2; Fig. S3).

The distribution of spermary maturation stages in June-

September (gametes recruitment period) was significantly different

from that in December-March (gametes maturity period), in all

populations (Kolmogorov-Smirnov, p,0.001; Fig. 3). Each

population was characterized, from June to September (gametes

recruitment period), by small spermaries, mainly belonging to the

earliest maturation stages (stages I and II). In the period

December-March (gametes maturity period), all populations were

characterized by more advanced maturation stages (mainly stage

III; Fig. 3). The mean spermary size of June-September (gametes

recruitment period) was significantly lower than that of December-

March (gametes maturity period) in all populations (Student’s t-

test, p,0.001; Table 3; Fig. 3). In all populations, June-September

(gametes recruitment period) was characterized by the presence of

embryos in the coelenteric cavity.

Fecundity, gonadal index and oocyte size were significantly

different among populations, during June-September (gametes

recruitment period) (fecundity, Kruskal–Wallis test, p,0.01;

gonadal index and oocyte size, Kruskal–Wallis test, p,0.001;

Tables 2 and S1). In this period, all oocyte reproductive

parameters showed positive correlations with both environmental

parameters (DT and solar radiation; Table S1; Fig. S4). During

December-March (gametes maturity period), the fecundity and

oocyte size were significantly different among populations

(fecundity, Kruskal–Wallis test, p,0.05; diameter, Kruskal–Wallis

test, p,0.001; Tables 2 and S1). The mean size of oocytes across

all populations was negatively correlated with the DT (Table S1;

Fig. S5). In the warmest population (Pantelleria island,

19.6960.05uC; Table 1), the number of mature oocytes at

fertilization was three times lower than in the recruitment period,

indicating a clear reduction of fecundity during this period

(Table 2). In the coldest population (Calafuria, 17.7360.16uC;

Table 1), fecundity was the same during both periods (Table 2).

In both periods, only the spermary size was significantly

different among populations (Kruskal–Wallis test, p,0.001;

Tables 3 and S2) and in both reproductive periods, spermary size

was negatively correlated with both DT and solar radiation (Table

S2; Fig. S6 and S7).

Discussion

Traditionally, seawater temperature cycles and solar radiation

fluctuations have been related to reproductive timing of gamete

development, fertilization and planulation [16,37] providing a

reliable cue to reset the biological clock and trigger the

physiological changes related to oocyte yolk deposition [38] and

spermary development [26,39,40]. The effects of changing

photoperiod and seawater temperature on gametogenic cycles of

anthozoans have been largely overlooked [15,41,42]. The

reproductive biology of B. europaea, studied at Calafuria, shows a

reproductive seasonality induced by annual variation of seawater

Table 2. Mean fecundity, gonadal index and diameter of oocytes in each population.

Gametes recruitment period (June – September)

Population N Fecundity (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 18 161639 0.2260.07 1135 166.363.3

Elba 6 148637 0.6560.17 544 193.763.8

Genova 8 168647 0.2760.12 505 166.063.3

Scilla 9 256658 0.4160.13 729 166.762.8

Palinuro 10 7346194 1.5760.38 1766 178.461.9

Pantelleria 8 6636240 1.4360.51 1312 188.262.6

Gametes maturity period (December – March)

Population N Fecundity (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 19 117638 1.0460.30 1040 350.367.5

Elba 8 175632 0.7960.16 435 243.467.7

Genova 4 4116183 1.3760.40 532 222.566.2

Scilla 4 6026257 2.7261.50 902 241.164.5

Palinuro 7 112630 0.3960.15 261 217.767.5

Pantelleria 6 2366106 1.2560.41 445 265.467.1

Mean fecundity, gonadal index and diameter of oocytes in each population for both reproductive periods. The sites are arranged in order of increasing DT; SE, standard
error. N, polyp number for fecundity and gonadal index, oocyte number for diameter.
doi:10.1371/journal.pone.0091792.t002
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temperature and photoperiod [26]. The same pattern seems to

appear in other Mediterranean dendrophylliids like Leptopsammia

pruvoti [39] and Astroides calycularis [40] and in the Mediterranean

endemic oculinid Cladocora caespitosa [43,44]. A similar periodicity

for gamete development and embryonic presence during the

recruitment period, suggest an overlap of reproductive seasonality

in all populations along the latitudinal gradient by B. europaea. In

broadcasting scleractinian corals, where temperature dependence

leads to location-specific synchronous reproductive times [45],

temporal variation in spawning events by corals from different

latitudes, over two or more consecutive months, is uncommon

[18]. In brooding scleractinians, reproductive cycles are protracted

over several months coinciding with environmental seasonality

change [46,47].

Specimens from the warmer and more irradiated populations of

B. europaea generated a significantly greater number of oocytes

during the initial stages of gametogenesis (gametes recruitment

period). Before fertilization (gametes maturity period), however,

individual oocyte number was not related to temperature/

irradiance along the gradient, while oocyte size was smaller with

increasing temperature (Tables 2 and S1). A reduction of

photosynthetic efficiency is documented for several species when

temperatures are above optimal [48,49], thereby limiting energetic

resources for polyp gametogenesis [9,50]. The onset of gameto-

genesis (proliferation of germ cells and their differentiation into

gametes) may require little energy investment and may, therefore,

be less sensitive to selective pressures such as food availability and

more reliant on environmental seasonal cycles [51]. In this

scenario, warmer populations of B. europaea could invest in

energetically inexpensive early stages of oogenesis to generate a

potential energy resource that would guarantee sufficient meta-

bolic efficiency. On the other hand, the ripening of gametes,

especially of oocytes, is an energy consuming process and,

therefore, extremely sensitive to selective pressures [51].

Regarding male gametogenesis, during both reproductive

periods, the size of spermaries decreased with increasing temper-

ature (Tables 3, S2), while their abundance was not significantly

related to environmental parameters. The energetic investment for

gametogenesis between males and females is often assumed to

differ [52]. For many lower invertebrates, and especially sessile

ones, mating effort and parental care are minimal and reproduc-

tive output provides a good approximation of the reproductive

effort, so most of the energy involved in reproduction is stored in

gonads [53]. This ‘‘cost of sex’’ is mainly represented by oogenesis,

while the investment of spermary production minimally influences

the energetic balance of the organism [52].

For all organisms, energy flow provides an important cost for

physiological performance, including maintenance, growth and

reproduction, all of which have implications on survival and

fitness. Reproductive investment and growth are often used as

indicators of health or stress at the organism level (e.g. [54]), and

knowledge of how such allocation varies among species or

morphological types is crucial for the interpretation of physiolog-

ical response to environmental factors [53]. Essentially, organisms

invest their energy in continuous trade-offs between somatic/

skeletal growth and reproduction, which in many species includes

the possibility of asexual reproduction [55]. In a changing

environment, physiological trade-offs vary through time, reflecting

variations in resource availability [56], and the ‘energy allocation’

Figure 3. Spermary frequency distribution in the recruitment
and maturity periods. Distribution of the maturation stages during
gamete recruitment period (gray histogram bars) and gamete maturity
period (black histogram bars).
doi:10.1371/journal.pone.0091792.g003
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explains this partitioning between the various investment options

(e.g. growth, sexual reproduction, defense) [57]. For example, the

coral Montipora digitata under varying light regimes shows an

increase of energy allocated to reproduction versus growth at

intermediate light levels. In this species the skeletal growth is less

susceptible to environmental variations and during periods of

resource shortage, energy is preferentially allocated for skeletal

growth [57]. B. europaea shows a reduction of skeletal density, due

to increasing porosity, and especially of pores with larger size, with

increasing temperature [28,29,58]. Also its growth and calcifica-

tion are negatively related to temperature [27,30]. Warmer

populations are less stable, showing a progressive reduction in

young individuals and reduced population density [29,30]. It has

been hypothesized that the decrease in calcification rate [27] and

skeletal density [29] in B. europaea with increasing temperature

could be due to a reduction of energy input available, maybe due

to photosynthetic inhibition of the symbionts [29,30]. Populations

of B. europaea in warmer sites could potentially resorb earlier

oocytes adjusting their energetic budget by reallocating the

resources destined to oocyte maturity into other vital functions

depleted by the negative effect of temperature. Resorption of

oocytes is not fully understood, but it is thought that by breaking

down the large amount of lipid vesicles in oocytes, energy can be

absorbed back into the coral [59]. In the soft coral Lobophytum

compactum, fecundity is reduced after an induced bleaching event.

In this zooxanthellate coral, early oocytes are resorbed to allow

development of remaining ones. Energy allocated to reproduction

is apparently shifted towards maintaining fewer eggs than normal

to ensure that they reach a mature size [37]. The branching coral

Acropora formosa shows lower survival rate and a resorption of early

vitellogenic oocytes after fragmentation, suggesting that there is a

trade-off of energy between reproduction and survival [60].

In conclusion, B. europaea shows the highest ecological perfor-

mance in the coldest part of its distribution, characterized by a

higher growth coefficient [30], a greater population density

[29,61] and a higher efficiency in partitioning the energy budget

(this work; [27-30]). On the contrary, populations in warmer

regions appear to invest their energy in the initial stages of

gametogenesis in order to ensure a sufficient gamete number ready

for fertilization in the maturity period. Nevertheless, this effort is

not enough to guarantee the same reproductive performance at

higher temperatures, as adult populations in warmer sites are less

abundant, less stable, and contain fewer young individuals [29,30].

This suggests that increasing temperature may negatively influence

post-fertilization life stages, such as larval dispersal, survival and

settlement. Depressed organismal condition exhibited by the

warmer population could be due to their location near the edge of

the species distribution range, where species generally show a

lower ecological performance with reduced adaptability to

variations in climate [62]. Being endemic to the Mediterranean

[63], B. europaea has limited potential to respond to seawater

warming by migrating northward toward lower temperatures,

since the latitudinal range considered covers almost the entire

northern distribution of this species [27]. This scenario would

indicate a possible reduction in the distribution area of this species,

with irrecoverable losses in terms of genetic variability, particularly

considering the fragmented genetic structure that characterizes the

species [64]. The present study, therefore, confirms the concerns

for the future of this endemic species [27–30]. In fact, in a

progressively warming Mediterranean, the energetic efficiency of

this species could be considerably reduced, affecting vital processes

(e.g. growth). Thus, an effective allocation strategy will be crucial

for ensuring adaptability to a changing environment.

Supporting Information

Figure S1 Living specimens of Balanophyllia europaea

photographed at Scilla (South Italy, 386019N, 156389E).

(TIF)

Figure S2 Annual fluctuation of solar radiation and
temperature. Mean monthly solar radiation (W/m2) and

temperature (DT; uC) during three years preceding the sampling.

Table 3. Mean abundance, gonadal index and diameter of spermaries in each population.

Gametes recruitment period (June – September)

Population N Abundance (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 17 140652 0.01060.003 425 51.461.2

Elba 2 1696106 0.01060.001 44 54.262.8

Genova 1 1463 0.080 211 46.361.1

Scilla 6 272680 0.01060.004 192 40.760.8

Palinuro 6 3936133 0.02060.006 185 40.061.0

Pantelleria 5 7606368 0.03060.020 343 42.060.7

Gametes maturity period (December – March)

Population N Abundance (#/100 mm3) mean ± SE Gonadal Index (%) mean ± SE N Diameter (mm) mean ± SE

Calafuria 19 18406609 1.1060.40 7257 120.5 60.8

Elba 8 5956235 0.4760.23 830 126.0 61.8

Genova 4 213561122 1.9561.51 1852 124.8 61.3

Scilla 4 9816561 0.1660.09 499 81.7 61.6

Palinuro 6 187561664 0.8560.80 1755 103.2 61.1

Pantelleria 5 266062320 0.9360.25 1831 92.0 61.0

Mean abundance, gonadal index and diameter of spermaries in each population for both reproductive periods. The sites are arranged in order of increasing DT; SE,
standard error. N, polyps number for abundance and gonadal index, spermaries number for diameter.
doi:10.1371/journal.pone.0091792.t003
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Annual fluctuation referred to January 1995 - December 1997 in

the Calafuria population. For the other five populations it referred

to January 2009 - December 2011.

(EPS)

Figure S3 Oocyte diameter during recruitment and
maturity periods. Monthly size increase of the oocyte diameter

during gamete recruitment (gray indicators) and maturity (black

indicators) period.

(EPS)

Figure S4 Oocytes. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete recruitment period; N, polyp number for fecundity

and gonadal index, oocyte number for diameter; rs, Spearman’s

correlation coefficient; p, significance of the correlation test.

(EPS)

Figure S5 Oocytes. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete maturity period; N, polyp number for fecundity

and gonadal index, oocyte number for diameter; rs, Spearman’s

correlation coefficient; p, significance of the correlation test.

(EPS)

Figure S6 Spermaries. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete recruitment period; N, polyps number for

abundance and gonadal index, spermaries number for diameter;

rs, Spearman’s correlation coefficient; p, significance of the

correlation test.

(EPS)

Figure S7 Spermaries. Correlation analyses. Spearman’s

correlation between reproductive and environmental parameters

during gamete maturity period; N, polyps number for abundance

and gonadal index, spermaries number for diameter; rs, Spear-

man’s correlation coefficient; p, significance of the correlation test.

(TIF)

Table S1 Oocytes. Kruskal-Wallis test and correlation analyses

between reproductive and environmental parameters in the

sampled populations, in both periods.

(DOC)

Table S2 Spermaries. Kruskal-Wallis test and correlation

analyses between reproductive and environmental parameters in

the sampled populations, in both periods.

(DOC)
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