FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI

Corso di Laurea in Scienze Naturali

Variazioni morfologiche e cristallografiche dello scheletro nel corso del ciclo vitale di due coralli duri (Scleractinia) del Mediterraneo

Tesi di laurea in Scienze Naturali

Relatore:

Prof. Francesco Zaccanti,

Dipartimento di Biologia Evoluzionistica

Sperimentale (BES)

Correlatori:

Dott. Stefano Goffredo (BES)

Dott. Erik Caroselli (BES)

Prof. Giuseppe Falini,

Dipartimento di Chimica G. Ciamician (CIAM)

Dott. Patrizia Vergni (CIAM)

Sessione Ottobre 2009

Anno Accademico 2008\2009

Presentata da:

Francesco Mezzo

Dopo l'istante magico in cui i miei occhi si sono aperti nel mare, non mi è stato più possibile vedere, pensare, vivere come prima. Jacques-Yves Cousteau

Indice

Abstract	Pag. 7
Parole chiave	Pag. 8

Capitolo 1

Introduzione	
1.1- Polimorfismo del carbonato di calcio ed ecologia dei coralli	Pag. 9
1.2- Diffrazione di raggi X (XRD)	Pag. 15
1.4- Scopo della ricerca	Pag. 17

Capitolo 2

Materiali e metodi	
2.1- Campionamento	Pag. 18
2.2- Analisi diffrattometriche cristallografiche	Pag. 20
2.3- Elaborazione dati	Pag. 22
2.4- Analisi statistiche	Pag. 23
Capitolo 3	
Risultati	Pag. 24
Capitolo 4	
Discussione 4.1	Pag. 27
Conclusioni 4.2	Pag. 31
Capitolo 5	
Appendice	

5.1- Dati dei campioni di Balanophyllia europaea	Pag. 32
--	---------

5.2- Dati dei campioni di Leptopsammia pruvoti	Pag. 36
Capitolo 6	
Bibliografia	Pag. 40
Capitolo 7	
Ringraziamenti	Pag. 47

Abstract

Secondo gran parte della letteratura lo scheletro dei coralli scleractinici moderni è costituito unicamente di aragonite. La sintesi del loro scheletro dipenderebbe da un controllo unicamente ambientale dato dall'attuale rapporto negli oceani degli ioni magnesio/calcio che favorisce termodinamicamente la deposizione di aragonite. Nel 1975 da uno studio sul corallo scleractinico Porites lobata, risultò la presenza di calcite sino a concentrazioni del 46%. Gli autori spiegarono la presenza di magnesiocalcite con l'esistenza di un controllo di tipo biologico da parte dell'animale nella deposizione del carbonato di calcio. Altri autori contrastarono quella spiegazione sostenendo che la presenza di magnesio-calcite fosse dovuta da una contaminazione da parte di microrganismi erosivi dello scheletro (microboring fillings) quali alghe e funghi. Da allora ricerche sui polimorfismi del carbonato di calcio nelle scleractinie sono state rare. Questo studio ha lo scopo di verificare e quantificare la presenza dei polimorfismi del carbonato di calcio in due scleractinie solitarie Mediterranee, Balanophyllia europaea, specie zooxantellata (simbiotica, "fotosintetizzante") e Leptopsammia pruvoti, non-zooxantellata (asimbiotica, "non-fotosintetizzante"). Le specie raccolte secondo un gradiente latitudinale sono state analizzate attraverso diffrazione di raggi X (XRD), e ne sono state identificate e quantificate le fasi polimorfe presenti. In tutti e due i coralli sono state individuate sia aragonite che calcite. In Balanophyllia europaea i valori ritrovati variavano dal 0.0 al 23%. In Leptopsammia pruvoti il contenuto di calcite variava tra 0.0 al 21%. In Balanophylla europaea si è trovata una correlazione negativa tra la percentuale di calcite e le

dimensioni/età, del polipo, in *Leptopsammia pruvoti* non è stata ritrovata alcuna correlazione. Analisi attraverso il microscopio elettronico a scansione non hanno trovato tracce di microrganismi erosivi dello scheletro (microboring fillings). Pur non potendo escludere totalmente la presenza di una contaminazione, l'ipotesi che la presenza di calcite possa derivare da una sintesi biologica da parte dell'animale rimane una spiegazione possibile.

Parole chiave

Polimorfismo, carbonato di calcio, Scleractinia, percentuale di calcite.

Capitolo 1 1.1 Polimorfismo del carbonato di calcio ed ecologia dei coralli

Fig. 1 Struttura cristallina della calcite.

I coralli dell'Ordine Scleractinia sono costituiti da un esoscheletro di carbonato di calcio (CaCO₃). Calcite ed aragonite sono due forme polimorfe del carbonato di calcio.

Per polimorfismo si intende il fenomeno per il quale uno stesso composto chimico può cristallizzare dando strutture diverse in condizioni fisico-chimiche diverse; Un composto polimorfo risulta essere più elastico di uno monocristallino. La calcite è costituita da un cristallo del gruppo dimetrico, appartiene al sistema trigonale, le forme del

Fig. 2 Struttura cristallina dell'aragonite.

cristallo possono essere quella del romboedro (Fig. 1), scalenoedro o prismatiche, possiede durezza 3 della scala di Mohs, sfalda secondo

le facce del romboedro ed è formata da due serie di piani paralleli, in cui giacciono alternativamente ioni calcio e ioni carbonato (Markgraf e Reeder 1985). L'aragonite invece ha cristalli del gruppo trimetrico, appartiene al sistema ortorombico, mostra diverse organizzazioni tridimensionali con forme prismatiche allungate (Fig. 2), possiede durezza compresa tra 3.5-4 della scala di Mohs, sfalda in forme prismatiche ed è formata da due strati di ioni carbonato e tre strati di ioni calcio (Dal Negro e Ungaretti 1971) La preferenzialità nella deposizione dei due polimorfi calcite e aragonite da parte di organismi marini biomineralizzatori, come i coralli, sembra essere influenzata dal rapporto magnesio/calcio (Stolarski 2007). Il rapporto magnesio/calcio come ben noto è variato nel corso dei tempi geologici. Gli organismi biominerallizzatori produttori di calcite sono proliferati quando il rapporto magnesio/calcio era inferiore a 4, infatti le scleractinie del Cretaceo avevano un esoscheletro composto totalmente di calcite (Stolarski 2007). Viceversa gli organismi biomineralizzatori produttori di aragonite sono proliferati quando il rapporto magnesio/calcio era superiore a 4. Nei mari attuali il rapporto magnesio/calcio è di 5.2, dunque, se il controllo fosse solo ambientale, gli organismi biomineralizzatori presenti nei mari attuali, dovrebbero essere costituiti interamente di aragonite.

Diversi studi su esoscheletri di coralli sclerattinici moderni affermano che questi sono costituiti unicamente di aragonite depositata per via di un controllo di tipo ambientale (Dodd 1967; Kinsman 1969; Livingston e Thompson 1971; Amiel et al. 1973; Vendermeulen e Watabe 1973; Weber 1973; Weber 1974; Macintyre e Towe 1976). Tuttavia, questi studi si trovano in contrapposizione con lavori che mostrano la deposizione di calcite in associazione all'aragonite, per via di un elevato grado di controllo biologico, nel corallo sclerattinico *Porites lobata* (Houck et al. 1975), nelle gorgonie, appartenenti alla Classe Anthozoa così come i coralli scleractinici (Kaczoroska et al. 2003), nei molluschi (Falini et al. 1996) e nell'echinoderma *Pisaster giganteus* (Gayathri et al. 2007). In particolare Houck et al.

10

(1975) mediante analisi diffrattometriche di raggi X riscontrano sul corallo sclerattinico *Porites lobata* (Dana, 1846) una presenza di magnesio calcite che raggiungeva concentrazioni del 46%, ipotizzando così la presenza di un controllo di tipo biologico. Successivamente, Macintyre e Towe

Fig. 3 Fotografia di *Symbiodinium sp*.

(1976) hanno eseguito analisi morfologiche e petrografiche sugli stessi campioni di Houck et al. (1975), sostenedo che la presenza di magnesio calcite in Porites lobata sia in realtà dovuta a una contaminazione di microrganismi erosivi dell'esoscheletro (microboring fillings), i quali scaverebbero nell'aragonite depositando calcite al suo La problematica calcite/aragonite, controllo posto (Macintyre e Towe 1976). ambientale/biologico nel processo di biomineralizzazione delle scleractinie rimane quindi una questione aperta, anche se ad oggi è stato dimostrato un effettivo controllo biologico nei molluschi (Falini et al. 1996) e sulle gorgonie (Kaczoroska et al. 2003). Nello studio effettuato da Falini et al. (1996) sui differenti strati di cui è costituita una conchiglia, si è addirittura riuscito a stabilire le macromolecole responsabili delle produzione delle varie fasi che hanno indotto la produzione di calcite o aragonite. Nello studio effettuato da Kaczorowska et al. (2003) su diverse specie di gorgonie il dato più interessante delle analisi risulta essere quello su Corallium nigrum, in cui si è osservata una predominante partecipazione di componente organica nella composizione della sua struttura esoscheletrica. La maggioranza dei coralli sclerattinici vive in simbiosi mutualistica con alghe unicellulari, dinoflagellati

simbionti, del genere *Symbiodinium* (comunemente noti con il nome di "zooxantelle") (Fig 3) essi sono previsti come endosimbionti nel citoplasma delle cellule del corallo. Sino al 95% dei prodotti della fotosintesi delle zooxantelle vengono utilizzati dal polipo per svolgere le attività metaboliche (Rodriguez-Lanetty et al 2001; Lewis e Coffroth 2004). Le zooxantelle in cambio ricevono nurtrienti inorganici. È un dato ormai certo che la fotosintesi favorisca la calcificazione (Gattuso et al. 1999; Al-Horani et al. 2004), ciò nonostante la comprensione del meccanismo di calcificazione e la sua interazione con la fotosintesi è molto limitata (Gattuso et al. 1999). Secondo Cuif e Dauphin (2005) i prodotti della fotosintesi andrebbero a far parte della matrice organica dello scheletro. Secondo il modello elaborato da Cuif e Dauphin (2005) l'accrescimento dei coralli sclerattinici è basato su una periodica secrezione di composti mineralizzanti da parte dell'ectoderma basale del polipo. Questo modello si struttura in quattro passaggi (Fig. 4):

a) L'ectoderma basale è in stretto contatto la superfice superiore delle fibre di aragonite. b) L'ectoderma basale secerne una sostanza organica ricca di composti mineralizzanti. c) Si ha la cristallizzazione del carbonato di calcio con conseguente formazione di un nuovo strato. d) Nuovo strato esoscheletrico formato.

12

Fig. 4 Schematizzazione della crescita a strati nella formazione degli esoscheletri di scleractinie, F1, F2, F3 rappresentano tre fibre di aragonite adiacenti, le frecce indicano l'orientazione cristallografica (Cuif e Dauphin 2005).

I coralli oggetto dello studio discusso in questa tesi sono *Balanophyllia europaea* (Risso, 1826) e *Leptopsammia pruvoti* Lacaze-Duthiers, 1897 (Fig. 5). *Balanophyllia europaea* è una scleractinia solitaria, non ermatipica, zooxantellata, fotosintetizzante ed endemica del Mar Mediterraneo (Zibrowius 1980). A causa della simbiosi con le zooxantelle, la distribuzione di questo corallo è ristretta tra 0-50 m di profondità (Zibrowius 1980), dove la sua densità di popolazione può raggiungere le decine di individui per metro quadrato (Goffredo et al. 2004b). La biologia riproduttiva è caratterizzata da ermafroditismo simultaneo e ovoviviparità (Goffredo et al. 2002). *Leptopsammia pruvoti* appartiene all'ordine delle scleractinie, è un corallo solitario, non ermatipico, azooxantellato ed è distribuito nel bacino del Mediterraneo e lungo le coste atlantiche europee fino alle coste meridionali dell'Inghilterra. È uno degli organismi più comuni in caverne ed anfratti sottomarini, che colonizza tra 0-70 m di profondità, con densità di migliaia di individui per metro quadrato (Zibrowius 1980). La biologia riproduttiva è caratterizzata da gonocorismo e ovoviviparità (Goffredo et al. 2005).

Fig. 5 Esemplari di Balanophyllia europaea (A) e Leptopsammia pruvoti (B).

1.2 Diffrazione di raggi X (XRD)

La diffrazione a raggi X (XRD) è una tecnica non distruttiva che viene utilizzata per materiali solidi cristallini sia per analisi qualitative che per analisi quantitative. Le sostanze cristalline sono caratterizzate da uno spettro diffrattometrico caratteristico, che può essere consultato su apposite banche dati. I cristalli

sono caratterizzati da una struttura tridimensionale ordinata con periodicità caratteristica, lungo gli assi cristallografici. Quando un fascio di raggi X colpisce un cristallo, fa vibrare gli elettroni che incontra con una frequenza uguale a quella della radiazione incidente. Gli elettroni colpiti, che hanno assorbito energia dai raggi X, riemettono energia sotto forma di una nuova sorgente puntiforme di raggi X. Le radiazioni X appena emesse interferiscono distruttivamente nella maggior parte dei casi, ma in particolari direzioni queste onde si sommano amplificandosi producendo così l'effetto di diffrazione. Si ha una riflessione da una famiglia di piani paralleli solo quando è soddisfatta l'equazione chiamata legge di Bragg " $n\lambda = 2d \text{ sen } \theta$ " dove n (numero intero), λ (lunghezza d'onda), d (distanza tra due successivi piani paralleli) e θ (angolo di incidenza e riflessione da un certo piano atomico) (Fig. 6). Il diffrattometro a polveri è costituito da cinque elementi fondamentali (una sorgente che emana radiazione X monocromatica costituita dal tubo radiogeno e appositi filtri, slit di entrata, un supporto in cui va inserito un apposito holder contenente la polvere da analizzare, slit di uscita, un contatore raggi X) (Fig. 7). Il diffrattometro è costruito in maniera tale che l'holder stia perfettamente fermo e la sorgente e il contatore raggi X ruotino su di esso grazie al supporto di braccia meccaniche. La sorgente e il contatore sono messi in movimento da ingranaggi a trasmissione in modo che quando la sorgente ruota di un angolo θ , il rivelatore ruota di un angolo 2 θ . Quando un raggio diffratto entra nel contatore viene registrato un segnale ed amplificato. Il segnale elettronico viene acquisito da un apposito programma sul computer a cui è collegato il diffrattometro. Il segnale si rileva con la comparsa di un picco più o meno grande a seconda dell'evento di diffrazione.

Fig. 7 Schema di un diffrattometro a polveri $\theta/2\theta$.

1.3 Scopo della ricerca

Gli scopi di questa ricerca sono i seguenti:

- 1) Individuare la composizione mineralogica di *Leptopsammia pruvoti* e *Balanophyllia europaea*.
- Stabilire i rapporti percentuali dei polimorfi del carbonato di calcio e la loro variazione in relazione alla dimensione ed età dei polipi.
- Verificare le differenze tra le due specie nel rapporto quantitativo tra i polimorfi del carbonato di calcio e loro possibili relazioni con le differenti strategie trofiche (presenza/assenza di fotosintesi).

Capitolo 2

2 Materiali e metodi

2.1 Campionamento

Tra il 9 Novembre 2003 e il 15 Dicembre 2007, esemplari di Balanophyllia europaea e Leptopsammia pruvoti (Fig. 5) sono stati raccolti in sei località disposte lungo le coste italiane secondo un gradiente latitudinale (Fig. 9). In ogni località sono stati raccolti 38-210 campioni di entrambe le specie mediante immersioni con autorespiratore ad aria secondo un metodo di campionamento random. Il campionamento è stato eseguito alle profondità dove i due coralli presentano la maggiore densità di popolazione (5-7 m per Balanophyllia europaea e 15-17 m per Leptopsammia pruvoti) e dove sono stati svolti i precedenti studi sulla loro biologia riproduttiva, biometria, accrescimento, dinamica e genetica di popolazione (Goffredo et al. 2002, 2004a, 2004b, 2005, 2006, 2007, 2008a, 2009a, 2009b). I coralli raccolti sono stati immersi per tre giorni in una soluzione allo 0.05% di ipoclorito di sodio per ripulire lo scheletro dalla parte organica del polipo. I campioni sono stati lavati ed asciugati a 50 °C per quattro giorni (Goffredo et al. 2007, 2008a). Ogni campione è stato osservato al microscopio binoculare per eliminare eventuali residui calcarei prodotti da altri organismi (Goffredo et al. 2008a). Per ogni corallite, la lunghezza (L, asse maggiore del disco orale), larghezza (l, asse minore del disco orale) e altezza (h, asse oro-aborale) (Fig. 10) sono state misurate con un calibro ventesimale e la massa scheletrica secca (M) è stata misurata utilizzando una bilancia di precisione (Chadwick-Furman et al. 2000; Goffredo e Chadwick-Furman 2003; Goffredo et al.

2002, 2005, 2007, 2008a, 2009a). L'età di ciascun corallite di *Balanophyllia europaea* è stata stimata applicando le funzioni d'accrescimento lunghezza-età precedentemente ricavate per ciascuna popolazione (Goffredo et al. 2004b, 2008a).

Ogni campione è stato triturato con un mortaio d'agata sino ad ottenere una polvere fine ed omogenea.

Fig. 8 *Balanophyllia europaea* (A) e *Leptopsammia pruvoti* (B). Immagine del disco orale con indicate la lunghezza (L) e larghezza (l) del polipo.

Fig. 9 Mappa delle coste italiane con indicati i siti in cui sono stati raccolti i coralli (GE: Genova, Latitudine 44° 20' N, Longitudine 9° 08' E; CL: Calafuria, Latitudine 43° 27' N, Longitudine 10° 21' E; LB: Elba, Latitudine 42° 45' N, Longitudine 10° 24' E; PL: Palinuro, Latitudine 40° 02' N, Longitudine 15° 16' E; SC: Scilla, Latitudine 38° 01' N, Longitudine 15° 38' E; PN: Pantelleria, Latitudine 36° 45' N, Longitudine 11° 57' E).

2.2 Analisi diffrattometiche cristallografiche

La polvere di ciascun campione è stata posata in un holder con un vetrino da laboratorio in maniera tale da ottenere uno strato compatto, omogeneo e senza spazi vuoti. Le polveri sono state analizzate tramite diffrazione di raggi X (XRD) utilizzando un diffrattometro per polveri X-Celerator (PANalytical) (Fig. 10).

Fig. 10 Diffrattometro per polveri X-Celerator (PANalytical), utilizzato per le analisi diffrattometriche.

È stato ottenuto il diffrattogramma di ciascun campione (Fig. 11), effettuando l'analisi con i seguenti parametri: tensione 40 kV; corrente 40 mA; slit entrata $\frac{1}{2}^{\circ}$; slit di uscita $\frac{1}{2}^{\circ}$; step time 60 s; step size 0.05°; 20iniziale = 20°; 20finale = 60°. Tre campioni per ogni specie scelti casualmente sono stati analizzati una seconda volta per controllare l'affidabilità delle analisi.

Fig. 11 *Balanophyllia europaea*. Esempio di diffrattogramma. Le frecce indicano i picchi principali dell'aragonite (26.317 $^{\circ}$ e 27.319 $^{\circ}$) e della calcite (29.919 $^{\circ}$).

2.3 Elaborazione dati

Un'analisi quantitativa delle fasi è stata fatta utilizzando il programma "Quanto" (http://www.ic.cnr.it/Varie/quantohelp/help/geninfo.htm). Questo programma, si basa sul metodo Rietveld che permette una ricostruzione teorica del profilo di diffrazione partendo dalle fasi inizialmente presenti sul campione per analisi di fasi quantitative, e quindi una ricerca manuale delle fasi di interesse da parte dell'operatore. Il programma permette di modificare manualmente diversi parametri (come le dimensioni di cella e altri parametri legati al profilo del picco) e procedere a cicli di "refinements" in modo da avere la maggior convergenza possibile tra il pattern sperimentale e quello calcolato da Quanto, sulla base della struttura di riferimento presenti nel campione ed ottenibili da banche dati.

2.4 Analisi statistiche

Il test di Kruskal-Wallis è un'alternativa non parametrica all'analisi di varianza (ANOVA), ed è utilizzato per comparare gruppi di medie. Il vantaggio di questo test è che l'assunzione di normalità dei dati non è richiesta in quanto il test si basa sui ranghi dei dati. Questo test ha provato d'essere più robusto della sua controparte parametrica in caso di distribuzione non normale dei campioni, ed è una valida alternativa alla statistica parametrica (Potvin e Roff 1993). Il test di Kruskal-Wallis è stato utilizzato per comparare la lunghezza, età e contenuto di calcite medio tra le popolazioni. Tukey's HSD (Honestly Significant Difference) è un test statistico generalmente usato in congiunzione con l'analisi della varianza per trovare quali medie sono significativamente diverse tra loro. Il test confronta tutte le possibili coppie di medie, ed è basato su un intervallo di variazione studentizzato (Tukey 1949). Tukey's HSD è stato utilizzato per il confronto del contenuto di calcite medio tra le popolazioni di *Leptopsammia pruvoti*. Tutte le analisi statistiche sono state effettuate mediante il software SPSS 12.0.

Capitolo 3

3 Risultati

In tutti i coralliti analizzati di entrambe le specie è stata riscontrata la presenza di aragonite. Nel 92 % dei coralliti di *Balanophyllia europaea* è stata ritrovata anche calcite con variazioni tra 0.5-23 % (Fig. 12). Nel 94% dei corallini di *Leptopsammia pruvoti* è stata ritrovata anche calcite con variazioni 0.5-20.81 %. In

Balanophyllia europaea i valori medi di lunghezza ed età dei coralli analizzati e percentuale di calcite presente negli scheletri non variavano tra le località campionate (Kruskal-Wallis test p>0.05) (Fig. 13). In *Leptopsammia pruvoti* la lunghezza media non variava tra le popolazioni (Kruskal-Wallis test p>0.05) (Fig. 14) mentre la percentuale di calcite media risultava significativamente diversa (Kruskal-Wallis test p<0.05) (Fig. 14). In *Leptopsammia pruvoti*, il confronto multiplo tra le medie eseguito con il test di Tuckey HSD ha evidenziato due gruppi omogenei di popolazioni, uno con contenuto di calcite significativamente maggiore (Calafuria; percentuale calcite media = 5.76) e l'altro con contenuto di calcite significativamente media = 1.89).

In tutte le popolazioni di *Balanophyllia europaea* la percentuale di calcite risultava correlata negativamente sia con la lunghezza che con l'età del corallo (Fig. 12). La variazione della lunghezza spiegava il 25.1-71.5% della varianza della percentuale di calcite. La variazione dell'età spiegava il 25.5-76.4% della varianza della percentuale di calcite (Fig. 12).

24

In tutte le popolazioni di *Leptopsammia pruvoti* la percentuale di calcite non era correlata alla lunghezza del corallite.

Fig. 12 *Balanophyllia europaea*. Relazioni tra percentuale di calcite e lunghezza ed età del polipo nelle varie popolazioni.

Fig. 13 *Balanophyllia europaea*. Lunghezza ed età dei coralli e percentuale di calcite rilevata nello scheletro nelle varie popolazioni campionate (Media + Deviazione standard; N: numero di individui).

Fig. 14 *Leptopsammia pruvoti*. Lunghezza dei coralli e percentuale di calcite rilevata nello scheletro nelle varie popolazioni campionate (Media + Deviazione standard; N: numero di individui).

Capitolo 4

4.1 Discussione

La presenza di calcite riscontrata nel 92% degli esoscheletri di Balanophyllia europaea e nel 94% degli esoscheletri di Leptopsammia pruvoti è in disaccordo con parte delle teorie formulate sino ad ora, dove si afferma che l'esoscheletro dei coralli scleractinici moderni è esclusivamente composto di aragonite (Dodd 1967; Kinsman 1969; Livingston e Thompson 1971; Amiel et al. 1973; Vendermeulen e Watabe 1973; Weber 1973; Weber 1974; Macintyre e Towe 1976). Secondo tali teorie l'aragonite sarebbe prodotta per via di un controllo unicamente ambientale, dovuto al rapporto degli ioni magnesio/calcio presente nei mari attuali che favorisce termodinamicamente la precipitazione di aragonite, rispetto alla calcite (Stolarski et al. 2007). D'altro canto la presenza di calcite riscontrata trova raffronto con alcuni lavori che mostrano un controllo di tipo biologico sulla deposizione del carbonato di calcio nel corallo scleractinico Porites lobata (Houck et al. 1975), nelle gorgonie, appartenenti alla Classe Anthozoa come le scleractinie (Kaczoroska et al. 2003), nei molluschi bivalvi (Falini et al. 1996) e nell'echinoderma della Classe Echinoidea Pisaster giganteus (Stimpson, 1857) (Gayathri et al. 2007).

La presenza di calcite rilevata in questo studio potrebbe essere dovuta a due differenti cause: 1) controllo biologico, da parte dei coralli, sul tipo di polimorfo cristallino prodotto; 2) ad una contaminazione ambientale.

La differenza significativa nella concentrazione di calcite media tra le popolazioni di *Leptopsammia pruvoti* (Fig. 13) e l'evidenza di due gruppi omogenei di popolazioni, di cui uno dei due costituito unicamente dalla popolazione di Calafuria, fa supporre la presenza di particolari condizioni locali, che porterebbero alla presenza nello scheletro di una maggiore concentrazione media di calcite in questa località, circostanza che sembra a supporto della ipotesi della contaminazione ambientale dello scheletro, piuttosto che a supporto di un controllo biologico da parte dell'animale.

La correlazione negativa tra la percentuale di calcite e la lunghezza ed età in tutte le popolazioni di Balanophyllia europaea, contrasta con la teoria di Macintyre e Towe (1976) che affermerebbe l'esistenza di un controllo puramente ambientale sulla calcificazione. Questo dato indica che nei primi anni di vita gli esoscheletri di Balanophyllia europaea sono costituiti da una più elevata percentuale di calcite rispetto all'età adulta. La maggior presenza di calcite nel periodo post-metamorfosi potrebbe permettere ai polipi di Balanophyllia europaea, che vivono in un ambiente sottoposto ad intensi stress idrodinamici (Zibrowius 1980), di rimaner ancorati più facilmente al substrato. Infatti, diversi studi hanno dimostrato che i materiali cristallini compositi (cioè fatti di più tipi di cristalli) sono più elastici rispetto quelli monocristallini (Dal Negro e Ungaretti 1971). Questa interpretazione è confermata da un altro studio, in cui campioni di Balanophyllia europaea e Leptopsammia pruvoti sono stati sezionati in tre differenti parti corrispondenti ad una zona aborale, una zona intermedia, ed una zona orale, e dove sono state effettuate analisi di diffrazione di polveri a raggi X (XRD) e analisi di Spettroscopia infrarossa a trasformata di Fourier (FTIR), che hanno rilevato una progressiva diminuzione delle percentuale di calcite

dalle sezioni aborali a quelle orali (Laiolo 2009). L'ipotesi che la calcite fornisca una maggiore resistenza idrodinamica trova supporto nel fatto che in Leptopsammia pruvoti il contenuto di calcite non è risultato correlato alla lunghezza del polipo, in quanto questa specie, vivendo in grotte a maggior profondità, è sottoposta a minori stress idrodinamici, e non avrebbe alcun vantaggio nell'aumentare la resistenza meccanica durante i primi anni del ciclo vitale, producendo il polimorfo calcite, termodinamicamente più dispendioso. A differenza di Leptopsammia pruvoti, in Balanophyllia europaea è presente una simbiosi mutualistica tra il polipo e alghe unicellulari zooxantelle che vivono al suo intero, la cui fotosintesi favorirebbe la precipitazione di carbonato di calcio (Gattuso et al. 1999). In particolare in un polipo di piccole dimensioni il rapporto tra superficie e volume è maggiore rispetto ad un altro polipo di grosse dimensioni (Elahi e Edmunds 2007) e dunque i polipi zooxantellati di piccole dimensioni di Balanophyllia europaea sarebbero favoriti nella precipitazione di carbonato di calcio, con l'apporto di origine fotosintetica in grado di fornire il surplus energetico necessario alla precipitazione del polimorfo più dispendioso: la calcite.

Tuttavia, il confronto con i risultati di Laiolo (2009) dà spazio all'ipotesi della contaminazione. Analisi attraverso microscopio elettronico a scansione su campioni di *Balanophyllia europaea* e *Leptopsammia pruvoti* non hanno mostrato tracce dei canali calcarei dei microorganismi erosivi dell'esoscheletro (microboring fillings) in grado di produrre calcite (Goffredo et al. 2008b), dunque sembrano poter escludere l'ipotesi di contaminazione di Macintyre e Towe (1976). Questa eventuale

contaminazione, nel caso delle due specie analizzate, potrebbe essere invece causata da policheti, serpulidi, che vivono a stretto contatto con queste due specie (osservazione personale). Al microscopio binoculare, nella fase di rimozione dei corpi estranei, è stato possibile osservare che molti campioni presentavano aggregati di materiale calcareo prodotto da serpulidi, localizzato soprattutto in corrispondenza della base dei coralli, nel punto in cui questi sono fissati al substrato. Le analisi XRD del materiale rimosso hanno confermato, come dimostrato da precedenti studi, che questi tubi prodotti dai serpulidi sono costituiti principalmente da calcite (Neff 1971). Tale contaminazione potrebbe dipendere, da un rapporto stretto o di simbiosi tra i serpulidi e i coralli, come già osservato da lavori precedenti eseguiti sul serpulide Spirobranchus giganteus (Pallas, 1766) che vive in associazione obbligatoria con coralli hermatipici tra cui anche Porites lobata e che si trova in simbiosi mutualistica con i coralli che gli forniscono nutrimento e protezione da predatori come pesci e crostacei; Il verme invece aumenta la circolazione dell'acqua per la filtrazione e protegge i coralli dalla predazione da pare di echinodermi e dall'accrescimento algale. Nel nostro caso, è ipotizzabile che i coralli da noi analizzati possano fornire spazio secondario per l'insediamento delle larve di serpulidi che svolgono un meccanismo di simbiosi analogo a quello presente in *Spirobranchus giganteus* (DeVantier et al. 1986; Marsden 1987; Hunte et al. 1990; Dai e Yang 1995; Martin e Britayev 1998; Qian 1999; Floros et al. 2005; Ben-Tzvi et al. 2006; Lewis 2006). Ulteriori studi sperimentali sulla preferenzialità del substrato da parte delle larve di queste due specie, e sui meccanismi molecolari di biomineralizzazione potranno chiarire se la

presenza di calcite sia dovuta ad un controllo biologico sul meccanismo di biomineralizzazione o ad una contaminazione da parte di tubi di Serpulidi. Al momento sono in corso esperimenti di ricristallizzazione in vitro che potranno fornire ulteriori dati sul tipo di controllo esistente sulla calcificazione (Vergni 2008; Falini et al. 2009).

4.2 Conclusioni

1) Gli esososcheletri di *Balanophyllia europaea* e *Leptopsammia pruvoti* presentano concentrazioni significative di calcite.

2) In *Balanophyllia europaea* la presenza di calcite sembra essere correlata negativamente alla lunghezza e all'eta del polipo. In *Leptopsammia pruvoti* non è stata riscontrata alcuna correlazione tra la percentuale di calcite e la lunghezza del polipo.

3) Un controllo biologico da parte del corallo nella produzione di calcite non può essere escluso.

Capitolo 5

5 Appendice

5.1 Dati dei campioni di Balanophyllia europaea

Elenco di tutti i campioni di Balanophyllia europaea utilizzati e dati delle analisi su ciascun campione.

Cla	assi di tag	lia
	mm	colore
Piccolo	0-7	
Medio	7-14	
Grande	>14	

Massa minima del campione 0.057 grammi

	GENOVA											Pa	am cell A		Param cell Calc					
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	a	b	c	% Calc	Calc esd	a	ь	c	GoF
BEU.GN.E05	BE.GN.S1	4.90	18	2.87	4.70	3.90	71	0.0882	0.0013	95.2	0.024	4.96018	7.96496	5.74524	4.8	0.185	4.92580	4.92580	16.80510	3.142
BEU.GN.H13	BE.GN.S2	5.35	20	3.16	5.10	4.80	103	0.1068	0.0010	92.6	0.032	4.96260	7.96890	5.74760	7.4	0.178	4.92820	4.92820	16.79180	2.607
BEU.GN.G13	BE.GN.S3	6.85	25	4.16	6.05	4.80	156	0.1561	0.0010	97.7	0.146	4.95960	7.96450	5.74480	2.3	0.011	4.92760	4.92760	16.80360	2.896
BEU.GN.C11	BE.GN.M1	8.05	30	5.00	7.30	9.40	434	0.3415	0.0008	97.4	0.013	4.95980	7.96480	5.74460	2.6	0.189	4.92290	4.92290	16.83870	3.098
BEU.GN.H10	BE.GN.M2	10.50	39	6.86	8.85	9.25	675	0.6367	0.0009	98.4	0.008	4.95970	7.96490	5.74480	1.6	0.200	4.99900	4.99900	16.57380	3.201
BEU.GN.B02	BE.GN.M3	12.25	45	8.31	10.00	9.90	952	0.8756	0.0009	97.3	0.020	4.95990	7.96470	5.74500	2.7	0.278	4.92610	4.92610	16.79580	4.787
BEU.GN.H04	BE.GN.M4	7.65	28	4.72	6.55	5.50	216	0.2634	0.0012	96.6	0.017	4.96060	7.96460	5.74550	3.4	0.141	4.9250	4.9250	16.83380	3.417
BEU.GN.H07	BE.GN.M5	8.50	31	5.33	7.05	7.10	334	0.3335	0.0010	97.7	0.010	4.96175	7.96759	5.74718	2.3	0.158	4.91880	4.91880	16.86500	3.259
BEU.GN.E06	BE.GN.M6	10.90	40	7.18	9.40	10.05	809	0.8002	0.0010	98.4	0.011	4.96010	7.96500	5.74510	1.6	0.266	4.83720	4.83720	17.24680	4.519
BEU.GN.C02	BE.GN.L1	14.25	53	10.14	10.30	11.90	1372	1.3416	0.0010	98.4	0.007	4.96100	7.96640	5.74620	1.6	0.154	5.01150	5.01150	16.53180	2.817
BEU.GN.H01	BE.GN.L2	16.15	60	12.07	11.20	15.00	2131	1.8828	0.0009	99.4	0.003	4.96100	7.96520	5.74470	0.6	0.248	5.01850	5.01850	16.51110	3.35
BEU.GN.B01	BE.GN.L3	25.65	95	27.36	16.70	26.20	8814	6.2525	0.0007	99.9	0.000	4.96010	7.96510	5.74470	0.1	0.102	5.00910	5.00910	16.56400	3.137
BEU.GN.A01	BE.GN.L4	15.70	58	11.60	12.55	10.95	1695	2.0823	0.0012	99.2	0.000	4.95990	7.96428	5.74442	0.8	0.000	5.03561	5.03561	16.41738	4.405
BEU.GN.G01	BE.GN.L5	17.85	66	14.00	11.70	18.05	2961	2.2675	0.0008	99.7	0.002	4.95990	7.96440	5.74470	0.3	0.122	5.02230	5.02230	16.55820	3.230
BEU.GN.F02	BE.GN.L6	19.35	72	15.90	11.40	16.40	2841	2.8630	0.0010	98.4	0.000	4.96000	7.96410	5.74490	1.6	0.000	4.87730	4.87730	17.10100	4.328

CALAFURIA											Param cell Arag							Param cell Calc			
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	c	% Cale	Calc esd	a	ь	c	GoF	
BEU.CL.IS1	BE.CL.S1	5.10	30	2.47	5.00	4.05	81	0.0435	0.0005	97.7	0.011	4.96180	7.96760	5.74710	2.3	0.196	4.91820	4.91820	16.87100	3.045	
BEU.CL.IS2	BE.CL.S2	5.65	33	2.78	5.55	3.00	74	0.0850	0.0012	98.6	0.012	4.96010	7.96510	5.74500	1.4	0.283	5.03150	5.03150	16.48880	4.759	
BEU.CL.IS3	BE.CL.S3	6.15	36	3.07	5.60	4.20	114	0.1395	0.0012	97.9	0.018	4.96320	7.97070	5.74830	2.1	0.249	5.03760	5.03760	16.48150	4.807	
BEU.CL.IS13	BE.CL.S5	6.10	35	3.04	5.60	3.50	94	0.0933	0.0010	98.3	0.015	4.95980	7.96450	5.74430	1.7	0.307	5.00710	5.00710	16.50050	5.371	
BEU.CL.IS21	BE.CL.S6	6.45	37	3.25	6.00	4.70	143	0.1610	0.0011	98.9	0.009	4.96130	7.96740	5.74650	1.1	0.261	5.03100	5.03100	16.51230	4.934	
BEU.CL.IS4	BE.CL.M1	8.00	46	4.24	7.50	6.00	283	0.4147	0.0015	93.6	0.037	4.95972	7.96473	5.74490	6.4	0.234	4.81140	4.81140	17.17710	3.454	
BEU.CL.IS5	BE.CL.M2	10.25	59	5.91	7.20	13.30	771	0.5799	0.0008	98.0	0.052	4.95990	7.96470	5.74490	2.0	0.335	4.99060	4.99060	16.58460	3,177	
BEU.CL.IS6	BE.CL.M3	12.15	70	7.61	8.40	11.10	890	1.0329	0.0012	99.0	0.005	4.96240	7.96920	5.74660	1.0	0.120	4.98870	4.98870	16.59830	2.952	
BEU.CL.IS22	BE.CL.M4	7.50	43	3.91	6.55	4.15	160	0.2059	0.0013	94.8	0.027	4.96120	7.96770	5.74670	5.2	0.196	5.00020	5.00020	16.90860	3.297	
BEU.CL.IS20	BE.CL.M5	9.50	55	5.32	7.35	6.85	376	0.5805	0.0015	96.6	0.016	4.96050	7.96620	5.74560	3.4	0.229	4.86550	4.86550	17.04210	2.952	
BEU.CL.IS11	BE.CL.M6	11.30	65	6.81	8.45	7.80	585	0.8159	0.0014	98.5	0.007	4.96040	7.96580	5.74530	1.5	0.245	4.91030	4.91030	16.93460	2.893	
BEU.CL.IS17	BE.CL.M7	7.10	36	3.65	6.00	6.80	228	0.1348	0.0006	93.0	0.033	4.96270	7.96980	5.74700	7.0	0.188	4.93000	4.93000	16.82560	2.825	
BEU.CL.IS8	BE.CL.L2	13.60	79	9.17	7.65	10.45	854	1.3283	0.0016	99.4	0.004	4.95990	7.96470	5.74490	0.6	0.133	4.99060	4.99060	16.58460	3.105	
BEU.CL.IS9	BE.CL.L3	16.40	95	13.24	9.70	15.40	1924	2.0982	0.0011	99.1	0.004	4.96240	7.96920	5.74660	0.9	0.387	4.98870	4.98870	16.59830	3.000	
BEU.CL.IS18	BE.CL.L5	14.90	86	10.83	8.80	13.30	1370	1.9375	0.0014	99.0	0.005	4.95990	7.96490	5.73360	1.0	0.301	5.01360	5.01360	16.53370	2.718	
BEU.CL.IS12	BE.CL.L6	15.00	87	10.97	9.50	11.70	1309	1.2269	0.0009	100.0	0.000	4.96050	7.96610	5.74550	0.0	0.250	4.80320	4.80320	15.90000	2.575	
BEU.CL.IS15	BE.CL.L7	15.40	89	11.57	10.15	12.70	1559	1.7775	0.0011	98.6	0.007	4.96200	7.96850	5.74450	1.4	0.294	4.95340	4.95340	16.74710	2.832	

	ELBA										Param cell Arag						Param cell Calc			
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	a	b	c	% Calc	Calc esd	a	ь	c	GoF
BEU.LB.B12	BE.LB.S1	4.75	23	2.40	4.05	3.60	54	0.0985	0.0018	88.7	0.460	4.96020	7.96460	5.74460	11.3	0.084	4.92880	4.92880	16.78220	4.637
BEU.LB.A07	BE.LB.S2	6.20	29	3.27	4.75	3.40	79	0.0817	0.0010	93.1	0.236	4.96020	7.96490	5.74470	6.9	0.043	4.92960	4.92960	16.78540	3.736
BEU.LB.B03	BE.LB.S3	6.75	32	3.62	5.90	4.60	144	0.1269	0.0009	87.6	0.258	4.96010	7.96460	5.74470	12.4	0.044	4.92630	4.92630	16.75760	2.249
BEU.LB.B11	BE.LB.M1	7.90	37	4.40	6.25	6.85	266	0.6275	0.0024	94.2	0.031	4.95990	7.96410	5.74420	5.8	0.240	4.92070	4.92070	16.81530	3.296
BEU.LB.C05	BE.LB.M2	9.95	47	5.95	8.55	7.35	491	0.7277	0.0015	99.3	0.171	4.96000	7.96440	5.74450	0.6	0.004	4.89290	4.89290	16.96690	3.560
BEU.LB.A11	BE.LB.M3	12.75	60	8.56	9.20	9.90	912	1.3360	0.0015	98.5	0.116	4.95980	7.96510	5.74460	1.5	0.007	4.93520	4.93520	16.74240	2.551
BELBCA05	BE.LB.M4	7.20	34	3.92	6.60	3.75	140	0.1892	0.0014	97.6	0.010	4.96244	7.96819	5.74844	2.4	0.124	4.93276	4.93276	16.83586	2.928
BELBCA20	BE.LB.M5	11.35	54	7.17	9.05	8.20	662	0.8692	0.0013	99.1	0.004	4.96240	7.96880	5.74840	0.9	0.133	4.90200	4.90200	16.97630	2.929
BELBCA36	BE.LB.M6	9.20	44	5.35	7.85	7.05	400	0.6705	0.0017	98.5	0.007	4.96062	7.96602	5.74596	1.5	0.168	4.91007	4.91007	16.87677	3.360
BEU.LB.B01	BE.LB.L1	14.40	68	10.50	9.70	10.00	1097	1.6808	0.0015	97.3	0.013	4.96040	7.96510	5.74470	2.7	0.164	4.94930	4.94930	16.72700	3.044
BEU.LB.A05	BE.LB.L2	15.20	72	11.60	10.00	9.90	1182	1.6789	0.0014	98.3	0.010	4.96010	7.96440	5.74420	1.7	0.328	4.75230	4.75230	17.44300	3.507
BEU.LB.C11	BE.LB.L3	16.30	77	13.35	11.80	18.30	2764	3.3808	0.0012	97.7	0.013	4.96020	7.96390	5.74460	2.3	0.161	4.92430	4.92430	16.84180	3.676
BELBCA09	BE.LB.L4	20.05	95	23.94	10.80	21.80	3708	5.9068	0.0016	97.6	0.010	4.96138	7.96697	5.74680	2.4	0.159	4.92660	4.92660	16.81400	2.91
BELBCA26	BE.LB.L5	17.70	84	16.13	9.45	13.35	1754	1.6422	0.0009	96.5	0.015	4.96260	7.96990	5.74710	3.5	0.000	4.93120	4.93120	16.76350	3.02
BELBCA06	BE.LB.L6	17.05	81	14.74	10.05	20.25	2725	3.4872	0.0013	98.9	0.005	4.96152	7.96760	5.74704	1.1	1.140	4.87160	4.87160	17.08830	3.094

PALINURO											Param cell Arag Param cell C								alc			
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	ь	c	% Calc	Calc esd	a	ь	c	GoF		
BEU.PL.C11	BE.PL.S1	5.85	33	4.03	5.00	5.60	129	0.1068	0.0008	92.9	0.038	4.96030	7.96470	5.74470	7.1	0.254	4.93090	4.93090	16.78850	3.154		
BEU.PL.A51	BE.PL.S2	6.35	36	4.43	5.20	8.95	232	0.1592	0.0007	99.0	0.008	4.96000	7.96530	5.74460	1.0	0.242	5.02110	5.02110	16.53780	5.012		
BEU.PL.B07	BE.PL.S3	6.65	37	4.68	6.25	5.25	171	0.1914	0.0011	77.1	0.405	4.96330	7.96930	5.74880	22.9	0.909	4.98510	4.98510	17.03920	10.857		
BEU.PL.A38	BE.PL.S4	6.70	38	4.72	5.80	7.10	217	0.1669	0.0008	93.5	0.034	4.96020	7.96470	5.74460	6.5	0.291	4.92800	4.92800	16.80210	2.336		
BEU.PL.C12	BE.PL.S5	6.90	39	4.88	6.40	7.75	269	0.2953	0.0011	99.4	0.003	4.96120	7.96600	5.74580	0.6	0.170	4.85850	4.85850	17.21650	2.247		
BEU.PL.A39	BE.PL.S6	7.00	39	4.97	6.20	5.80	198	0.1242	0.0006	95.9	0.023	4.96170	7.96730	5.74670	4.1	0.389	4.89050	4.89050	16.93210	2.571		
BEU.PL.A46	BE.PL.M1	8.00	45	5.83	6.65	7.75	324	0.2843	0.0009	98.3	0.007	4.96260	7.96930	5.74820	1.7	0.108	4.93510	4.93510	16.89470	2.338		
BEU.PL.A34	BE.PL.M2	10.40	58	8.12	7.30	10.15	605	0.5319	0.0009	97.5	0.009	4.96300	7.96940	5.74870	2.6	0.132	4.93140	4.93140	16.84140	2.389		
BEU.PL.A33	BE.PL.M3	12.05	68	9.91	8.55	11.65	943	1.0139	0.0011	98.5	0.005	4.96340	7.97070	5.74920	1.5	0.112	4.92557	4.92557	16.88246	2.230		
BEU.PL.A42	BE.PL.M4	8.60	48	7.27	6.80	7.75	356	0.3907	0.0011	99.1	0.004	4.96230	7.96920	5.74770	0.9	0.096	5.00130	5.00130	16.67770	1.805		
BEU.PL.C09	BE.PL.M5	10.15	57	7.86	6.55	9.40	491	0.6077	0.0012	97.3	0.011	4.96624	7.96870	5.74770	2.7	0.119	4.93450	4.93450	16.81720	1.726		
BEU.PL.A13	BE.PL.M6	12.10	68	9.97	6.80	17.00	1099	1.3993	0.0013	95.7	0.020	4.96120	7.96880	5.74610	4.3	0.176	4.93170	4.93170	16.80770	2.116		
BEU.PL.A16	BE.PL.L1	15.25	86	14.13	9.30	25.35	2824	2.2517	0.0008	96.3	0.019	4.96010	7.96510	5.74450	3.7	0.220	4.93870	4.93870	16.77950	3.062		
BEU.PL.A04	BE.PL.L2	16.00	90	15.32	8.60	17.95	1940	2.1910	0.0011	97.0	0.015	4.96080	7.96600	5.74540	3.0	0.125	4.92530	4.92530	16.80320	3.154		
BEU.PL.A18	BE.PL.L3	16.90	95	16.87	8.55	14.45	1640	1.3967	0.0009	99.2	0.004	4.95990	7.96530	5.74470	0.8	0.180	5.03160	5.03160	16.43000	3.090		
BEU.PL.C14	BE.PL.L4	14.15	80	12.55	8.40	11.40	1064	1.5498	0.0015	99.0	0.005	4.96020	7.96550	5.74510	1.0	0.149	4.90540	4.90540	16.88230	2.132		
BEU.PL.A06	BE.PL.L5	15.80	89	14.99	9.90	17.45	2144	2.2122	0.0010	99.3	0.003	4.96238	7.96930	5.74752	0.7	0.150	4.80564	4.80564	17.35649	1.782		
BEU.PL.C02	BE.PL.L6	15.90	89	15.15	10.30	14.25	1833	2.1557	0.0012	99.8	0.001	4.96152	7.96741	5.74638	0.2	0.100	4.90870	4.90870	16.98070	2.233		
BEU.PL.C16	BE.PL.L7	16.05	90	15.40	9.05	17.40	1985	2.0443	0.0010	98.2	0.000	4.96100	4.96700	5.74590	1.8	0.176	4.89144	4.89144	16.97905	3.624		

	SCILLA										Param cell Arag							Param cell Calc				
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	a	b	c	% Cale	Calc esd	а	ь	c	GoF		
BEU.SC.E08	BE.SC.S1	5.70	34	3.68	5.40	3.35	81	0.0796	0.0010	95.5	0.000	4.96093	7.96093	5.74598	4.5	0.342	4.93170	4.93170	16.82920	5.351		
BEU.SC.C03	BE.SC.S2	6.65	39	4.39	6.20	3.85	125	0.1170	0.0009	95.1	0.030	4.96220	7.96850	5.74640	4.9	0.271	4.92990	4.92990	16.84770	3.765		
BEU.SC.H09	BE.SC.S3	6.70	40	4.43	6.50	5.20	178	0.1401	0.0008	95.3	0.020	4.96230	7.96900	5.74810	4.7	0.163	4.92930	4.92930	16.79740	2.798		
BEU.SC.E11	BE.SC.S4	5.60	33	3.61	4.35	4.20	80	0.0925	0.0012	95.3	0.020	4.96230	7.96900	5.74810	4.7	0.163	4.92910	4.92910	16.79820	2.801		
BEU.SC.E07	BE.SC.S5	6.80	40	4.51	5.70	4.50	137	0.1809	0.0013	97.6	0.011	4.96260	7.96970	5.74660	2.4	0.147	4.93040	4.93040	16.81210	2.884		
BEU.SC.H12	BE.SC.M1	7.40	44	4.97	6.25	3.60	131	0.1920	0.0015	91.3	0.047	4.96300	7.96990	5.74810	8.7	0.210	4.92350	4.92350	16.81310	3.417		
BEU.SC.H06	BE.SC.M2	11.05	66	8.16	8.30	9.15	659	0.4752	0.0007	99.4	0.003	4.96130	7.96740	5.74650	0.6	0.292	5.03540	5.03540	16.49200	3.015		
BEU.SC.H13	BE.SC.M4	7.10	42	4.74	6.25	4.35	152	0.1848	0.0012	97.6	0.011	4.96290	7.97000	5.74770	2.4	0.154	4.93160	4.93160	16.84740	2.497		
BEU.SC.E09	BE.SC.M5	7.20	43	4.82	6.95	6.30	248	0.2687	0.0011	97.7	0.024	4.96110	7.96720	5.74070	2.3	0.350	5.00000	5.00000	16.63170	6.007		
BEU.SC.D01	BE.SC.M6	8.05	48	5.50	7.15	5.05	228	0.2214	0.0010	99.2	0.007	4.96110	7.96720	5.74070	0.8	0.303	5.21300	5.21300	16.00000	5.457		
BEU.SC.A02	BE.SC.M7	9.85	58	7.04	8.70	7.55	508	0.5232	0.0010	95.8	0.053	4.96440	7.97210	5.75000	4.2	0.436	4.91280	4.91280	16.90640	5.727		
BEU.SC.G04	BE.SC.M8	12.20	72	9.31	8.10	9.45	733	1.0400	0.0014	98.5	0.010	4.96110	7.96720	5.74070	1.5	0.250	4.98950	4.98950	16.57570	3.180		
BEU.SC.E06	BE.SC.M9	7.30	43	4.89	6.85	5.50	216	0.2954	0.0014	93.8	0.042	4.96260	7.96970	5.74660	6.2	0.242	4.98660	4.98660	16.59300	4.203		
BEU.SC.H10	BE.SC.M11	7.30	43	4.89	5.80	5.15	171	0.2500	0.0015	98.1	0.008	4.96260	7.97000	5.74850	1.9	0.150	4.91110	4.91110	16.88040	2.535		
BEU.SC.H01	BE.SC.M12	12.90	77	9.13	9.05	11.00	1009	0.7834	0.0008	100.0	0.000	4.96110	7.96720	5.74070	0.0	0.000	4.98950	4.98950	16.60570	4.503		
BEU.SC.E10	BE.SC.M13	7.35	44	4.73	6.80	5.75	226	0.1726	0.0008	97.8	0.019	4.96110	7.96720	5.74070	2.2	0.287	4.91740	4.91740	16.90300	3.913		
BEU.SC.H03	BE.SC.M16	12.40	74	8.69	8.70	10.65	902	1.0405	0.0012	99.5	0.000	4.96220	7.96900	5.74490	0.5	0.000	4.98590	4.98590	16.96220	3.659		
BEU.SC.E02	BE.SC.L1	14.65	87	12.09	11.40	12.50	1640	1.9551	0.0012	96.5	0.029	4.96210	7.96890	5.74740	3.5	0.286	5.04880	5.04880	16.43030	5.207		
BEU.SC.G03	BE.SC.L2	15.05	89	12.59	11.20	11.50	1522	1.8429	0.0012	96.4	0.018	4.96220	7.96900	5.74720	3.6	0.147	4.97810	4.97810	16.64470	3.066		
BEU.SC.F01	BE.SC.L4	14.60	87	12.02	8.60	12.25	1208	1.3392	0.0011	99.0	0.008	4.96200	7.96870	5.74450	1.0	0.253	5.00250	5.00250	16.55260	0.080		
BEU.SC.C02	BE.SC.L5	15.95	95	13.78	10.85	18.40	2501	2.0414	0.0008	99.7	0.004	4.96400	7.97270	5.75020	0.3	0.460	4.98950	4.98950	16.75570	0.150		

PANTELLERIA											Param cell Arag							Param cell Calc			
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	c	% Calc	Calc esd	a	ь	c	GoF	
BEU.PN.C37	BE.PN.S1	4.55	23	3.07	4.20	4.15	62	0.0577	0.0009	94.0	0.032	4.96198	7.96787	5.74772	6.0	0.279	4.92805	4.92805	16.79944	2.257	
BEU.PN.C45	BE.PN.S2	5.40	28	3.70	5.00	3.65	77	0.0681	0.0009	97.7	0.016	4.96201	7.96902	5.74658	2.3	0.125	5.00146	5.00146	16.60271	3.011	
BEU.PN.A22	BE.PN.S3	6.05	31	4.19	5.50	4.60	120	0.0731	0.0006	98.9	0.006	4.96150	7.96780	5.74920	1.1	0.253	5.00780	5.00780	16.54770	3.100	
BEU.PN.C34	BE.PN.S4	4.75	24	3.21	4.35	3.70	60	0.0602	0.0010	98.1	0.010	4.96200	7.96920	5.74690	1.9	0.171	5.00270	5.00270	16.63560	2.302	
BEU.PN.A24	BE.PN.S6	6.60	34	4.62	6.10	4.40	139	0.1068	0.0008	95.2	0.024	4.96240	7.96890	5.74600	4.8	0.193	4.93140	4.93140	16.83220	2.087	
BEU.PN.A21	BE.PN.M1	8.10	42	5.84	6.15	7.75	303	0.2361	0.0008	97.2	0.014	4.96210	7.96890	5.74640	2.8	0.217	5.00810	5.00810	16.52220	2.939	
BEU.PN.A01	BE.PN.M2	11.10	57	8.52	9.40	9.30	762	0.8663	0.0011	98.5	0.008	4.96120	7.96760	5.74690	1.5	0.154	5.01990	5.01990	16.55390	3.242	
BEU.PN.B03	BE.PN.M3	13.20	68	10.64	10.80	11.50	1288	1.3031	0.0010	99.7	0.002	4.96260	7.96940	5.74660	0.3	0.000	4.64190	4.64190	18.13840	3.030	
BEU.PN.C32	BE.PN.M4	8.55	44	6.22	7.45	6.40	320	0.2491	0.0008	95.1	0.000	4.96110	7.96720	5.74070	4.9	0.309	4.92850	4.92850	16.77380	3.021	
BEU.PN.C02	BE.PN.M6	12.20	63	9.60	9.85	11.30	1067	1.0138	0.0010	96.2	0.017	4.96230	7.96910	5.74760	3.8	0.229	4.92790	4.92790	16.80850	1.731	
BEU.PN.E28	BE.PN.L1	14.25	73	11.79	11.25	13.55	1706	1.6035	0.0009	98.0	0.008	4.96220	7.96890	5.74730	2.0	0.110	4.93280	4.93280	16.79860	2.206	
BEU.PN.E07	BE.PN.L2	15.40	79	13.13	10.65	12.95	1668	2.5611	0.0015	99.3	0.000	4.96200	7.96810	5.74570	0.7	0.195	5.01140	5.01140	16.55170	3.018	
BEU.PN.E20	BE.PN.L3	18.50	95	17.26	10.60	16.90	2603	2.9800	0.0011	98.4	0.008	4.96230	7.96900	5.74600	1.6	0.287	4.90620	4.90620	16.90960	3.178	
BEU.PN.E37	BE.PN.L4	14.00	72	11.51	10.60	11.55	1346	1.4643	0.0011	96.6	0.018	4.96160	7.96790	5.74400	3.4	0.359	5.00360	5.00360	16.52100	2.088	
BEU.PN.E04	BE.PN.L5	15.20	78	12.89	14.05	13.10	2197	1.9018	0.0009	99.6	0.002	4.96190	7.96870	5.74420	0.4	0.200	4.99950	4.99950	16.62400	2.465	
BEU.PN.E15	BE.PN.L6	16.15	83	14.05	11.70	15.05	2233	3.2841	0.0015	99.1	0.004	4.96170	7.96820	5.74400	0.9	0.144	5.01010	5.01010	16.59720	2.368	
BEU.PN.E02	BE.PN.L7	17.20	88	15.42	10.65	15.05	2165	3.0951	0.0014	98.8	0.007	4.96200	7.96880	5.74440	1.2	0.000	4.83310	4.83310	17.22160	2.352	

						Pa	ram cell A	rag			1	Param cell Ca	ale							
codice	Aliquota	L (mm)	%L max	Età (anni)	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	a	b	c	% Cale	Calc esd	a	ь	c	GoF
BEU.GN.H01	BE.GN.L2.RC	16.15	60	12.07	11.20	15.00	2131	1.8828	0.0009	99.4	0.003	4.96098	7.96683	5.74594	0.6	0.614	5.01766	5.01766	16.53606	2.393
BEU.SC.H10	BE.SC.M11.RC	7.30	43	4.89	5.80	5.15	171	0.2500	0.0015	98.2	0.000	4.96116	7.96679	5.74590	1.8	0.000	4.90921	4.90921	16.86402	2.776
BEU.PN.C34	BE.PN.S4.RC	4.75	24	3.21	4.35	3.70	60	0.0602	0.0010	98.1	0.015	4.96224	7.96861	5.74730	1.9	0.368	4.92852	4.92852	16.89664	2.905

5.2 Dati dei campioni di Leptopsammia pruvoti

CI	assi di tag	lia
	mm	colore
Piccolo	0-3.2	
Medio	3.2-6.4	
Gande	>6.4	

Massa minima del campione 0.057 grammi

Elenco di tutti i campioni di Leptopsammia pruvoti utilizzati e dati delle analisi su ciascun campione.

				GENOVA	1						Pa	ram cell A	rag		Param cell Calc					
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	c	% Calc	Calc esd	а	b	c	GoF	
BPR.GN.B50	LP.GN.S1	2.80	30	2.70	5.10	30.28	0.0409	0.001350646	99.05	0.005	4.96192	7.96887	5.74742	0.95	0.133	5.03989	5.03989	16.512210	3.222	
BPR.GN.B10	LP.GN.S2	3.00	33	2.80	2.55	16.82	0.0309	0.001836746	97.49	0.012	4.96299	7.96920	5.74841	2.51	0.136	4.93620	4.93620	16.87220	3.038	
BPR.GN.B41	LP.GN.S3	3.20	35	3.05	7.20	55.19	0.0408	0.000739244	98.48	0.006	4.96245	7.96901	5.74779	1.52	0.120	5.03370	5.03370	16.54520	2.470	
BPR.GN.B23	LP.GN.M1	3.85	42	3.75	10.15	115.09	0.1647	0.00143102	99.51	0.002	4.96175	7.96735	5.74661	0.49	0.090	4.89990	4.89990	16.88230	2.713	
BPR.GN.B19	LP.GN.M2	5.00	54	4.65	8.15	148.82	0.1101	0.000739804	100.00	0.001	4.96144	7.96713	5.74646	0.00	0.000	4.80290	4.80290	17.67760	3.242	
BPR.GN.C13	LP.GN.M3	6.20	67	5.45	9.45	250.79	0.2392	0.000953787	98.15	0.009	4.96006	7.9648	5.74509	1.85	0.134	4.94182	4.94182	16.82468	2.213	
BPR.GN.B36	LP.GN.M4	3.30	36	3.05	6.90	54.54	0.0647	0.001186183	97.78	0.010	4.96190	7.96914	5.74733	2.22	0.227	4.94350	4.94350	16.88240	2.817	
BPR.GN.A17	LP.GN.M5	5.20	56	5.10	15.80	329.09	0.2756	0.00083745	98.47	0.008	4.96210	7.96850	5.74440	1.53	0.140	4.93638	4.93638	16.87932	3.060	
BPR.GN.B45	LP.GN.L1	7.00	76	6.05	17.10	568.77	0.3199	0.000562438	94.84	0.023	4.96166	7.96741	5.74634	5.16	0.155	4.93070	4.93070	16.81678	2.954	
BPR.GN.B01	LP.GN.L2	8.0	86	6.0	19.2	719.30	0.61	0.000847631	99.57	0.000	4.96159	7.96729	5.746110	1.43	0.111	4.94040	4.94040	16.92168	2.772	
BPR.GN.C04	LP.GN.L3	8.75	95	7.95	10.00	546.34	0.9753	0.001785144	96.29	0.016	4.96242	7.96854	5.74720	3.71	0.134	4.93350	4.93350	16.83040	2.653	
BPR.GN.A01	LP.GN.L4	6.55	71	5.70	8.75	256.57	0.3126	0.001218358	98.53	0.006	4.96223	7.96874	5.74731	1.47	0.174	4.94820	4.94820	16.92260	2.666	
BPR.GN.C02	LP.GN.L5	7.70	84	6.70	10.35	419.37	0.5769	0.00137564	99.37	0.002	4.96192	7.96774	5.74661	0.63	0.138	4.99600	4.99600	16.68740	2.422	
BPR.GN.C01	LP.GN.L6	8.55	93	7.00	15.35	721.54	0.8437	0.001169299	99.33	0.003	4.96220	7.96970	5.74620	0.67	0.256	4.94030	4.94030	16.94500	2.479	

			C.	ALAFUR	IA				Param cell Arag Param cell Calc									alc	
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	c	% Calc	Calc esd	а	b	c	GoF
BPR.CL.A25	LP.CL.S1	2.65	34	2.45	8.40	42.83	0.0598	0.001396111	95.15	0.020	4.96354	7.97013	5.74840	4.85	0.250	4.94496	4.94496	16.90279	2.537
BPR.CL.C50	LP.CL.S2	2.90	38	2.50	6.10	34.73	0.0540	0.001554662	79.19	0.086	4.96332	7.96956	5.74819	20.81	0.197	4.92788	4.92788	16.80001	2.805
BPR.CL.B15	LP.CL.S3	3.05	40	2.90	5.80	40.29	0.0591	0.001466803	94.59	0.022	4.96246	7.96825	5.74727	5.41	0.129	4.94129	4.94129	16.86582	2.537
BPR.CL.C17	LP.CL.S4	2.65	34	2.65	5.70	31.44	0.0585	0.001860799	93.72	0.056	4.96198	7.96773	5.74622	6.28	0.270	4.93338	4.93338	16.79889	5.098
BPR.CL.C16	LP.CL.S5	3.05	40	2.90	4.00	27.79	0.0602	0.002166451	90.43	0.038	4.96236	7.96837	5.74704	9.57	0.152	4.94172	4.94172	16.86952	2.510
BPR.CL.C05	LP.CL.S6	3.15	41	2.90	5.55	39.82	0.0706	0.001773019	99.32	0.004	4.95980	7.96510	5.74390	0.69	0.141	4.81767	4.81767	17.24677	3.693
BPR.CL.C20	LP.CL.M1	4.00	52	3.65	6.10	69.95	0.1113	0.001591192	98.90	0.005	4.96043	7.96493	5.74464	1.10	0.181	4.90125	4.90125	16.92768	2.883
BPR.CL.C28	LP.CL.M2	5.00	65	4.40	9.40	162.42	0.3769	0.002320522	98.27	0.007	4.96174	7.96709	5.74626	1.74	0.141	4.95428	4.95428	16.83870	2.677
BPR.CL.C11	LP.CL.M3	5.70	74	5.50	6.10	150.20	0.1830	0.001218411	87.77	0.055	4.96297	7.96906	5.74777	12.23	0.193	4.93640	4.93640	16.83290	2.747
BPR.CL.C10	LP.CL.M4	5.20	68	4.40	6.70	120.40	0.1240	0.001029914	98.78	0,010	4.96030	7.96526	5.74430	1.23	0.000	4.98040	4.98040	16.78940	5.145
BPR.CL.A26	LP.CL.L1	6.40	83	5.60	7.00	197.04	0.1377	0.00069884	97.80	0.011	4.96010	7.96430	5.74390	2.20	0.161	4.93850	4.93850	16.86730	2.951
BPR.CL.A46	LP.CL.L2	6.95	90	5.90	12.40	399.35	0.4801	0.001202218	91.64	0.033	4.96396	7.97051	5.74889	8.37	0.151	4.94854	4.94854	16.89602	2.444
BPR.CL.B14	LP.CL.L3	7.30	95	4.05	7.75	179.96	0.1185	0.00065849	94.99	0.020	4.96306	7.96941	5.74814	5.01	0.132	4.93059	4.93059	16.83179	2.459
BPR.CL.C12	LP.CL.L4	6.40	83	5.65	9.05	257.02	0.2683	0.001043888	98.85	0.009	4.96250	7.96940	5.74580	1.15	0.224	5.02220	5.02220	16.55800	5.147

				ELBA							Pa	ram cell A		Param cell Calc					
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	с	% Calc	Calc esd	a	b	c	GoF
BPR.LB.C23	LP.LB.S1	2.80	26	2.50	7.40	40.7	0.0457	0.001123302	99.18	0.004	4.96224	7.96861	5.74701	0.82	0.123	5.01915	5.01915	16.54296	2.823
BPR.LB.C04	LP.LB.S2	3.20	30	2.90	20.35	148.3	0.2579	0.001738798	97.13	0.000	4.96190	7.96710	5.74610	2.87	0.214	4.94360	4.94360	16.86770	3.524
BPR.LB.C25	LP.LB.S3	3.25	31	3.00	6.05	46.3	0.0631	0.001362007	90.13	0.033	4.96221	7.96814	5.74744	9.87	0.132	4.94217	4.94217	16.88300	2.332
BPR.LB.D09	LP.LB.M1	4.20	40	3.90	6.00	77.2	0.1354	0.001754138	96.29	0.017	4.96186	7.96849	5.74696	3.71	0.161	4.94145	4.94145	16.85534	2.604
BPR.LB.B06	LP.LB.M2	5.50	52	5.20	8.85	198.8	0.2066	0.001039277	98.68	0.006	4.96125	7.96706	5.74587	1.32	0.000	4.94759	4.94759	16.88366	2.822
BPR.LB.B05	LP.LB.M3	6.15	58	5.45	11.95	314.6	0.3453	0.001097658	99.51	0.003	4.96000	7.96500	5.74390	0.49	0.000	4.93520	4.93520	16.87270	3.458
BPR.LB.B12	LP.LB.M4	3.60	34	3.45	10.05	98.0	0.0714	0.000728571	96.53	0.019	4.93211	7.96869	5.74693	3.47	0.151	4.93891	4.93891	16.86058	3.285
BPR.LB.D02	LP.LB.M5	4.85	46	4.40	10.85	181.9	0.2104	0.001156679	95.91	0.018	4.96261	7.96942	5.74738	4.09	0.148	4.94190	4.94190	16.89456	3.038
BPR.LB.C05	LP.LB.L1	7.60	72	6.80	24.90	1010.7	0.8534	0.000844386	97.32	0.013	4.96207	7.96874	5.74694	2.69	0.125	4.93240	4.93240	16.87680	2.845
BPR.LB.A10	LP.LB.L2	9.00	85	6.40	15.15	685.4	0.4250	0.000620103	94.85	0.023	4.96168	7.96777	5.74683	5.15	0.000	4.93887	4.93887	16.85448	2.935
BPR.LB.C22	LP.LB.L3	10.05	95	8.70	18.00	1236.1	1.1423	0.000924129	98.55	0.000	4.96160	7.96880	5.74610	1.45	0.000	5.02130	5.02130	16.57100	3.704
BPR.LB.A04	LP.LB.L4	6.30	60	5.85	7.55	218.5	0.1059	0.000484668	99.26	0.004	4.96240	7.96910	5.74740	0.74	0.111	5.04620	5.04620	16.56150	3.578
BPR.LB.A08	LP.LB.L5	7.85	74	7.00	10.60	457.5	0.4213	0.000920874	99.03	0.005	4.96150	7.96750	5.74590	0.97	0.000	4.91525	4.91525	16.93662	3.302
BPR.LB.C13	LP.LB.L6	7.20	68	6.25	11.00	388.8	0.2364	0.000608025	99.48	0.003	4.95990	7.96470	5.74380	0.52	0.208	4.90197	4.90197	16.96679	4.255

			P	ALINUR	0				Param cell Arag Param cell Ca % Arag Argest a b c % Calc Calcest a b								alc		
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	с	% Calc	Calc esd	а	b	c	GoF
BPR.PL.B53	LP.PL.S1	3.05	37	2.55	6.45	39.4	0.0657	0.001667538	98.73	0.000	4.96000	7.96520	5.74430	1.27	0.000	5.03311	5.03311	16.49259	4.657
BPR.PL.A25	LP.PL.S2	3.15	38	3.10	7.00	53.7	0.0874	0.001627988	98.80	0.009	4.96004	7.96528	5.74433	1.21	0.212	5.01286	5.01286	16.69145	4.917
BPR.PL.B28	LP.PL.S3	3.20	39	2.95	9.60	71.2	0.0875	0.001229348	98.80	0.006	4.96154	7.96757	5.74643	1.20	0.156	4.93236	4.93236	16.84226	3.254
BPR.PL.B43	LP.PL.S4	2.95	36	2.75	5.30	33.8	0.0515	0.001525059	97.92	0.011	4.96030	7.96510	5.74450	2.09	0.161	4.94000	4.94000	16.85640	3.270
BPR.PL.A10	LP.PL.S5	2.85	34	2.65	5.30	31.4	0.0546	0.001736745	96.78	0.016	4.95993	7.96471	5.74394	3.22	0.152	4.93552	4.93552	16.85232	2.810
BPR.PL.B26	LP.PL.M1	3.95	48	3.90	14.05	170.0	0.2486	0.001462424	99.24	0.005	4.95972	7.96481	5.74407	0.76	0.245	4.93596	4.93596	16.91725	3.788
BPR.PL.A19	LP.PL.M2	4.60	56	4.15	8.70	130.4	0.1846	0.001415196	99.14	0.004	4.96196	7.96896	5.74723	0.86	0.118	4.91020	4.91020	16.89766	3.230
BPR.PL.C10	LP.PL.M3	5.40	65	4.60	12.60	245.8	0.5139	0.002090579	97.59	0.012	4.96014	7.96432	5.7444	2.42	0.139	4.93847	4.93847	16.86454	3.131
BPR.PL.B30	LP.PL.M4	4.00	48	3.75	9.30	109.6	0.0925	0.000844263	98.24	0.009	4.96243	7.96789	5.74675	1.77	0.155	4.94712	4.94712	16.85319	2.905
BPR.PL.B47	LP.PL.M5	6.00	73	5.50	16.15	418.6	0.3727	0.000890396	98.10	0.011	4.96132	7.96745	5.74571	1.90	0.206	4.94088	4.94088	16.87769	3.521
BPR.PL.C13	LP.PL.L1	6.50	79	6.10	11.70	364.4	0.3034	0.000832715	97.26	0.013	4.96160	7.96740	5.74650	2.74	0.138	4.94005	4.94005	16.83803	2.947
BPR.PL.B20	LP.PL.L2	7.00	85	6.25	11.35	390.0	0.4904	0.001257438	98.48	0.008	4.95980	7.96467	5.74412	1.53	0.169	4.93660	4.93660	16.86650	2.998
BPR.PL.B57	LP.PL.L3	7.50	91	6.25	19.70	725.3	0.7786	0.001073537	97.42	0.018	4.96049	7.96644	5.74514	2.58	0.210	4.95429	4.95429	16.99904	4.096
BPR.PL.C27	LP.PL.L4	6.60	80	5.55	8.40	241.7	0.2538	0.001050233	99.05	0.005	4.96190	7.96800	5.74680	0.95	0.198	5.01740	5.01740	16.56640	3.151

				SCILLA							Pa	ram cell A	rag		Param cell Calc						
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	c	% Calc	Calc esd	а	b	c	GoF		
BPR.SC.B38	LP.SC.S1	2.80	21	2.70	4.70	27.91	0.0585	0.002096266	98.74	0.006	4.96095	7.96590	5.74547	1.26	0.103	4.93183	4.93183	16.82194	3.068		
BPR.SC.B15	LP.SC.S2	3.05	23	2.95	4.40	31.09	0.0566	0.001820338	91.98	0.038	4.96187	7.96639	5.74677	8.02	0.150	4.92878	4.92878	16.80154	2.977		
BPR.SC.B19	LP.SC.S3	3.20	24	3.15	7.35	58.19	0.0694	0.001192674	97.91	0.010	4.96154	7.96781	5.74687	2.09	0.120	4.92765	4.92765	16.83840	2.878		
BPR.SC.B21	LP.SC.M1	4.00	30	4.00	10.75	135.09	0.2000	0.001480511	97.75	0.013	4.96065	7.96577	5.74527	2.25	0.144	4.92490	4.92490	16.87480	3.284		
BPR.SC.B25	LP.SC.M2	5.20	39	4.90	12.10	242.14	0.2877	0.001188133	98.51	0.008	4.96790	7.96790	5.74647	1.49	0.134	4.91443	4.91443	16.93269	3.044		
BPR.SC.A14	LP.SC.M3	5.90	44	4.85	11.70	262.95	0.3123	0.001187688	97.68	0.014	4.96163	7.96812	5.74650	2.32	0.168	4.93496	4.93496	16.84293	3.724		
BPR.SC.B41	LP.SC.M4	3.70	27	3.35	8.55	83.23	0.1416	0.001701221	99.54	0.002	4.96031	7.96555	5.74454	0.46	0.117	4.89940	4.89940	16.98640	2.903		
BPR.SC.B20	LP.SC.L1	8.00	59	7.10	16.25	724.92	0.8700	0.001200128	99.26	0.006	4.96167	7.96820	5.74661	0.74	0.187	5.03176	5.03176	16.49058	4.778		
BPR.SC.B28	LP.SC.L2	10.25	76	9.40	28.45	2152.90	1.7460	0.000810999	98.93	0.005	4.96149	7.96702	5.74612	1.07	0.122	4.91464	4.91464	16.87692	2.920		
BPR.SC.A03	LP.SC.L3	12.80	95	10.35	20.85	2169.43	1.5591	0.000718667	97.15	0.000	4.96172	7.96748	5.74664	2.85	0.134	4.93614	4.93614	16.84303	2.980		
BPR.SC.B24	LP.SC.L4	6.55	49	6.05	10.05	312.79	0.3586	0.001146457	97.33	0.018	4.96110	7.96700	5.74580	2.67	0.140	4.93378	4.93378	16.85305	2.831		
BPR.SC.A15	LP.SC.L5	9.25	69	7.20	15.60	816.00	0.9427	0.001155273	98.55	0.007	4.96255	7.96821	5.74710	1.45	0.193	4.94620	4.94620	16.82160	2.983		
BPR.SC.A08	LP.SC.L6	10.50	78	8.60	16.40	1163.11	0.9740	0.000837409	99.39	0.003	4.96160	7.96760	5.74620	0.61	0.228	4.94370	4.94370	16.89330	3.130		
BPR.SC.B47	LP.SC.L7	7.50	56	6.55	23.85	920.20	1.7836	0.001938281	97.64	0.015	4.96150	7.96728	5.74620	2.36	0.211	4.92785	4.92785	16.93836	4.292		

			PA	NTELLE	RIA						Pa	ram cell A	rag		Param cell Calc								
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	а	b	с	% Calc	Calc esd	а	b	с	GoF				
BPR.PN.C49	LP.PN.S1	2.60	27	2.40	6.25	30.63	0.0824	0.002690127	98.33	0.008	4.96043	7.96542	5.74557	1.67	0.136	4.93475	4.93475	16.85368	3.241				
BPR.PN.B04	LP.PN.S2	2.95	30	2.90	7.10	47.71	0.0739	0.001549088	98.77	0.007	4.96081	7.96691	5.74548	1.23	0.149	5.02630	5.02630	16.51740	3.911				
BPR.PN.A11	LP.PN.S3	2.80	29	2.75	5.40	32.66	0.0387	0.001184936	99.66	0.002	4.96048	7.96596	5.74545	0.34	0.131	4.93320	4.93320	16.89570	3.482				
BPR.PN.B06	LP.PN.M1	4.10	42	4.00	7.25	93.38	0.1347	0.001442434	97.00	0.014	4.96110	7.96699	5.74577	3.00	0.118	4.93021	4.93021	16.83162	2.911				
BPR.PN.A07	LP.PN.M2	5.05	52	4.40	18.20	317.62	0.3084	0.000970977	98.73	0.007	4.95961	7.96557	5.74434	1.27	0.137	4.93980	4.93980	16.89080	3.507				
BPR.PN.C20	LP.PN.M3	6.00	62	5.40	16.25	413.51	0.4100	0.000991507	99.34	0.003	4.96221	7.96855	5.74698	0.66	0.121	4.78588	4.78588	17.42654	2.924				
BPR.PN.B15	LP.PN.M4	3.30	34	3.10	7.60	61.06	0.0944	0.001545941	97.58	0.012	4.96281	7.96966	5.74769	2.42	0.138	4.93787	4.93787	16.84950	2.945				
BPR.PN.B26	LP.PN.M5	5.30	54	4.90	15.70	320.23	0.2896	0.000904351	99.67	0.002	4.96174	7.96879	5.74669	0.33	0.214	5.02058	5.02058	16.80318	3.727				
BPR.PN.B21	LP.PN.L1	7.00	72	6.55	21.10	759.82	0.8194	0.001078411	99.19	0.004	4.96116	7.96698	5.74583	0.81	0.085	5.03330	5.03330	16.48792	2.817				
BPR.PN.A03	LP.PN.L2	8.00	82	6.50	12.30	502.34	0.4962	0.000987776	99.14	0.004	4.96075	7.96663	5.74531	0.86	0.129	5.03228	5.03228	16.49878	3.126				
BPR.PN.A06	LP.PN.L3	9.25	95	7.55	15.75	863.89	1.1508	0.001332112	99.44	0.002	4.96147	7.96717	5.74600	0.56	0.087	5.03130	5.03130	16.45320	2.742				
BPR.PN.B07	LP.PN.L4	6.55	67	5.65	16.00	465.05	0.3109	0.00066853	99.02	0.000	4.96094	7.96696	5.74558	0.98	0.178	4.87191	4.87191	17.12475	3.135				
BPR.PN.C43	LP.PN.L5	7.60	78	7.40	33.15	1464.26	1.5217	0.001039227	99.03	0.004	4.96179	7.96796	5.74635	0.97	0.177	4.99930	4.99930	16.71540	2.924				
BPR.PN.A17	LP.PN.L6	8.80	90	6.60	13.35	608.97	0.4674	0.000767522	99.08	0.004	4.96145	7.96798	5.74630	0.92	0.152	5.02463	5.02463	16.50912	2.933				
			~~		~ ~ · · · · ·																		
	CONTROLLO CASUALE											Pai	am cell A	rag			Par	am cell Cal	c				
codice	Aliquota	L (mm)	%Lmax	l (mm)	h (mm)	V (mm3)	M (g)	Dens (g/mm3)	% Arag	Arg esd	a	b	с	% Calc	Calc esd	a	b	c	GoF				
BPR.GN.A01	LP.GN.L4.RC	6.55	71	5.70	8.75	256.57	0.3126	0.001218358	99	0.005	4.96153	7.96796	5.74681	1.08	0.165	4.85924	4.85924	17.20361	3.053				
BPR.LB.B12	LP.LB.M4.RC	3.60	34	3.45	10.05	98.0	0.0714	0.000728571	97	0.023	4.96058	7.96605	5.74508	3.42	0.172	4.94092	4.94092	16.82746	4.065				
BPR.SC.B47	LP.SC.L7.RC	7.50	56	6.55	23.85	920.20	1.7836	0.001938281	98	0.017	4.96041	7.96457	5,74444	2.05	0.356	4,94780	4.94780	16.84670	4.178				

Capitolo 6

6 Bibliografia

- Al-Horani F., Ferdelman T., Al-Moghrabi S. M., De Beer D. 2004: Spatial distribution of calcification and photosynthesis in the scleractinian coral *Galaxea fascicularis*. Coral Reefs, 24: 173-180
- Amiel A. J., Friedman G. M., Miller D. S. 1973: Distribution and nature of incorporation of trace elements in modern aragonite corals. Sedimentology, 20: 47–64
- Ben-Tzvi O., Endibinder S., Brokovich E. 2006: A beneficial association between apolychaete worm and a scleractinian coral? .Coral Reefs, 25: 98
- Chadwick-Furman N. E., Goffredo S., Loya Y. 2000: Growth and population dynamic model of the reef coral *Fungia granulosa* Klusinger, 1879 at Eilat, northern Red Sea. Journal of Experimental Marine Biology and Ecology, 249: 199-218
- Cuif J. P., Dauphin Y. 2005: The environment recording unit in coral skeletons a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth proces in fibres. Biogeosciences, 2:61-73
- Dai C. F., Yang H. P. 1995: Distribution of *Spirobranchus giganteus corniculatus* (Hove) on the coral reefs of southern Taiwan.
- Dal Negro A., Ungaretti L. 1971: Refinement of crystal structure of aragonite. American Mineralogist, 56: 768-772

- DeVantier L. M., Reichelt R. E. Bradbury R. H. 1986: Does Spirobranchus giganteus protect host Porites from predation Ancanthaster planci: predator pressure as a mechanism of coevolution? . Marine Ecology – Progres Series, 32: 307-310.
- Dodd J. R. 1967: Magnesium and strontium in calcareous skeletons; a review. Journal of Paleontology, 41: 1313-1329
- Elahi R., Edmunds P. J. 2007: Determinate growth and the scaling of photosynthetic energy intake in the solitary coral *Fungia concinna* (Verrill). Journal of Experimental Marine Biology and Ecology, 349: 183-193
- Falini G., Albeck S., Weiner S., Addadi L. 1996: Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 271: 67-69
- Falini G., Goffredo S., Vergni P., Caroselli E., Reggi M. 2009: The role of organic matrix from Mediterranean corals in CaCO₃ precipitation. International School on Biological Crystallization, Granada (Spain), 18-22 May.
- Floros C., Samways M., Amstrong B. 2005: Polychaete (*Spirobranchus giganteus*) loading on South African corals. Aquatic Conservation: Marine and Freshwater Ecosystems, 15: 289-298.
- Gattuso J. P., Allemand D., Frankignoulle M. 1999: Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry¹. American Zoologist, 39: 160-183
- Gayathri S., Lakshminarayanan R., Weaver J. C., Morse D. E., Kini R. M., Valiyaveettil S. 2007: In vitro stusy of magnesium-calcite biomineralization in

the skeletal materials of the seastar *Pisaster giganteus*. Chemistry – A European Journal, 13: 3262-3268

- Goffredo S., Arnone S., Zaccanti F. 2002: Sexual reproduction in the Mediterranean solitary coral *Balanophyllia europaea* (Scleractinia, Dendrophylliidae). Marine Ecology Progress Series, 229: 83-94
- Goffredo S., Chadwick-Furman N. E. 2003: Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Marine Biology, 142: 411-418
- Goffredo S., Mezzomonaco L., Zaccanti F. 2004a: Genetic differentiation among populations of the Mediterranean hermaphroditic brooding coral *Balanophyllia europaea* (Scleractinia, Dendrophylliidae). Marine Biology, 145: 1075-1083
- Goffredo S., Mattioli G., Zaccanti F. 2004b: Growth and population dynamics model of the Mediterranean solitary coral *Balanophyllia europaea* (Scleractinia, Dendrophylliidae). Coral Reefs, 23: 433-443
- Goffredo S., Radetić J., Airi V., Zaccanti F. 2005: Sexual reproduction of the solitary sunset cup coral *Leptopsammia pruvoti* (Scleractinia, Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Marine Biology, 147: 485-495
- Goffredo S., Airi V., Radetić J., Zaccanti F. 2006: Sexual reproduction of the solitary sunset cup coral *Leptopsammia pruvoti* (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Marine Biology, 148: 923-932

- Goffredo S., Caroselli E., Pignotti E., Mattioli G., Zaccanti F. 2007: Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Marine Biology, 152: 351-361
- Goffredo S., Caroselli E., Mattioli G., Pignotti E., Zaccanti F. 2008a: Relationships between growth, population structure and sea surface temperature in the temperate solitary coral *Balanophyllia europaea* (Scleractinia, Dendrophylliidae). Coral Reefs, 27: 623-632
- Goffredo S., Caroselli E., Zaccanti F., Falini G. 2008b: Skeletal calcium carbonate phase polymorphism in two temperate scleractinians. 11th International Coral Reefs Symposium, Ft. Lauderdale (FL, USA), 7-11 July
- Goffredo S., Caroselli E., Mattioli G., Pignotti E., Dubinsky Z., Zaccanti F. 2009a: Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnology & Oceanography, 54: 930-937
- Goffredo S., Di Ceglie S., Zaccanti F. 2009b: Genetic differentiation of the temperate-subtropical stony coral *Leptopsammia pruvoti* in the Mediterranean Sea. Israel Journal of Ecology and Evolution, *in press*
- Houck J. E., Buddemeier R. W., Chave K. E. 1975: Skeletal low-magnesium calcite in living scleractinian corals. Science, 189: 997-999
- Hunte W., Conlin B. N., Marsden J.R. 1990: Habitat selection in the tropical polychaetes *Spirobranchus giganteus* I. Distribution on corals. Marine Biology, 104, 87-92

- Kaczorowska B., Hacura A., Kupka T., Wrzalik R., Talik E., Pasterny G.,
 Matuszewska R. 2003: Spectroscopic characterization of natural corals.
 Analytical and Bioanalytical Chemistry, 377: 1032-1037
- Kinsman D. J. J. 1969: Interpretation of Sr (super +2) concentration in carbonate minerals and rocks. Journal of Sedimentary Research, 39: 486-508
- Laiolo L. 2009: Variazione quantitativa dei cristalli di aragonite e calcite nell'accrescimento dell'esoscheletro di coralli mediterranei. BS Thesis, University of Bologna, Bologna
- Lewis C. L., Coffroth M. A. 2004: The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science, 304: 1490-1492
- Lewis J. B. 2006: Biology and ecology of the hydrocoral *Millepora* on coral reefs. Advances in Marine Biology, 50: 1-55
- Livingston H. D., Thompson G. 1971: Trace element concentrations in some modern corals. Limnology and Oceanography, 16: 786-796
- Macintyre I. G., Towe K. M. 1976: Skeletal calcite in living scleractinian corals: microboring fillings, not primary skeletal deposits. Science, 193: 701-702
- Markgraf S. A., Reeder R. J. 1985: High-temperature structure refinements of calcite and magnesite. American Mineralologist, 70: 590-600
- Marsden J. R. 1987: Coral preference behaviour by planktotrophic larvae of
 Spirobranchus giganteus corniculatus (Serpulidae: Polychaeta). Coral Reefs, 6:
 71-74

- Martin D., Britayev T. A. 1998: Symbiotic Polychetes: review of known species. Oceanography and Marine Biology, 36: 217-340
- Neff J. M. 1971: Ultrastructural studies of the secretion of calcium carbonate by the serpulid polychaete worm, *Pomatoceros caeruleus*. Zeitschrift fuer Zellforschung und Mikroskopische Anatomie, 120: 160-186
- Potvin C., Roff D. A. 1993: Distribution-free and robust statistical methods: viable alternatives to parametric statistics?. Ecology, 74: 1617–1628
- Rodriguez-Lanetty M., Loh W., Carter D., Hoegh-Guldberg O. 2001: Latitudinal variability in symbiont specificity within the widespread scleractinian coral *Plesiastera versipora*. Marine Biology, 138: 1173-1181
- Stolarski J., Meibom A., Przeniosło R., Mazur M. 2007: A cretaceous scleractinian coral with a calcitic skeleton. Science, 318: 92-94
- Vandermeulen J. H., Watabe N. 1973: Studies on reef corals. i. skeleton formation by newly settled planula of *Pocillopora damicornis*. Marine Biology, 23: 47–57
- Vergni P. 2008: Rilevanza e struttura della *Balanophyllia europea*: un corallo del mediterraneo. MS Thesis, University of Bologna, Bologna
- Tukey J.W. 1949:Comparing individual means in the analysis of variance.Biometrics, 5: 99
- Weber J. N. 1973: Incorporation of strontium into reef coral skeletal carbonate. Geochimica et Cosmochimica Acta, 37: 2173-2190
- Weber J. N. 1974: Skeletal chemistry of scleractinian reef corals; uptake of magnesium from seawater. American Journal of Science, 274: 84-93

Zibrowius H. 1980 : Les scléractiniaires de la Méditerranée et de l'Atlantique nordoriental. Mémories de l'Institut Océanographique (Monaco), 11: 1-284

Capitolo 7

7 Ringraziamenti

Questa tesi è frutto del mio impegno e della passione che nutro per il mare e per la scienza, dunque la dedico a tutti coloro che mi hanno fatto scoprire questa nuova realtà, a tutti quelli mi hanno sempre sostenuto rendendo possibile realizzare questo progetto e fra questi in primo luogo Umberto Pepoli.

Innanzitutto ringrazio la mia famiglia, ringrazio i miei genitori e i nonni Antonio, Maria, Camillo e Laura per l'affetto e ogni tipo di sostegno che mi hanno dato in questi anni, lo zio Corrado e Noemi, lo zio Mik e Maura e i miei cugini Ale e Simone, lo zio Claudio, Miriana i miei cugini Laurent e Margot, il bisnonno Atair, la bisnonna Rosina.

Ringrazio Erik per <u>l'enorme</u> aiuto, Stefano << ricorderáti anche del Mosca, Che dissi, lasso, capo ha cosa fatta.>> (Dante Inferno XXVIII 103-111), Giuseppe, Patty, Francesco Zaccanti per la disponibilità ad aver seguito la mia tesi, Leo con cui ho condiviso nottate insonni sulla tesi, il Team MarineScienceGroup (Gabri, Fil, Cla, Miki, Albert, MTP, Alberto, Anna, Simo, Pilar Casado de Amezúa, Patty, Fiorella e Franz che mi ha fatto scoprire una nuova unità di misura del tempo), Sonia per l'amore che mi da , i genitori di Sonia, ringrazio il Conte , Claudia piena di lividi, Fabio Dark Angel e i sui calcetti universitari, Sirio, Alberto Gennaro Maria Stefania (il cugino di Sirio), Raymond Arthur Dart , il Tosh e Castora con cui mi sono divertito un tot, Rubens, Claudia, Valeria, Pater Hollywood, Carla, Ari, Dozzi, Paco, Franca e Ste, Satana, Angelo, Cristo che mi ha dato una mano trovare errori nella tesi, Gamba, Cillo, Macca che si è scordato di invitarmi alla sua festa di laurea e quindi dovrà recuperare alla mia, Guido, Teccia, l'Irene, l'Alice, l'Alicina, Matteo, Simone Cortesi, Magno Mezzo Panino, Giobba, Zandi , Donno perché è l'unico uomo che ho visto rischiare di morire per aver ingoiato un croissant intero, Guida, Zucco dagli occhi cerulei, la Pasquini, la Rossi, Barbieri, la tartaruga Quelo, Emilio, Erik Cartman, Yared, Jack Giacomo Lanzano Cremonini, Giacco, Berta, Seba, Tommy, le Di Cocco (Eugi, Guglia, Bea e Rita), Pigna , Ga : <<mi si è attaccata addosso>>, Erne, Mecco, la Ros, Sara, la Cia, la Ka che mi ha abbandonato il giorno del mio compleanno ora è un cubetto, la C1 nuova di pacca, Mello che si voleva fare prete, Antoniuccio, Gigi, Sara, la Simo.